Suppr超能文献

聚(3,4-乙撑二氧噻吩)涂层对镁降解以及与人类胚胎干细胞的细胞相容性在潜在神经应用方面的影响。

The effects of poly(3,4-ethylenedioxythiophene) coating on magnesium degradation and cytocompatibility with human embryonic stem cells for potential neural applications.

作者信息

Sebaa Meriam, Nguyen Thanh Yen, Dhillon Shan, Garcia Salvador, Liu Huinan

机构信息

Department of Bioengineering, University of California, Riverside, California, 92521.

出版信息

J Biomed Mater Res A. 2015 Jan;103(1):25-37. doi: 10.1002/jbm.a.35142. Epub 2014 Mar 5.

Abstract

Magnesium (Mg) is a promising conductive metallic biomaterial due to its desirable mechanical properties for load bearing and biodegradability in human body. Controlling the rapid degradation of Mg in physiological environment continues to be the key challenge toward clinical translation. In this study, we investigated the effects of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the degradation behavior of Mg substrates and their cytocompatibility. Human embryonic stem cells (hESCs) were used as the in vitro model system to study cellular responses to Mg degradation because they are sensitive and can potentially differentiate into many cell types of interest (e.g., neurons) for regenerative medicine. The PEDOT was deposited on Mg substrates using electrochemical deposition. The greater number of cyclic voltammetry (CV) cycles yielded thicker PEDOT coatings on Mg substrates. Specifically, the coatings produced by 2, 5, and 10 CV cycles (denoted as 2×-PEDOT-Mg, 5×-PEDOT-Mg, and 10×-PEDOT-Mg) had an average thickness of 31, 63, and 78 µm, respectively. Compared with non-coated Mg samples, all PEDOT coated Mg samples showed slower degradation rates, as indicated by Tafel test results and Mg ion concentrations in the post-culture media. The 5×-PEDOT-Mg showed the best coating adhesion and slowest Mg degradation among the tested samples. Moreover, hESCs survived for the longest period when cultured with the 5×-PEDOT-Mg samples compared with the non-coated Mg and 2×-PEDOT-Mg. Overall, the results of this study showed promise in using PEDOT coating on biodegradable Mg-based implants for potential neural recording, stimulation and tissue engineering applications, thus encouraging further research.

摘要

镁(Mg)因其具有适合承载的机械性能以及在人体内的生物可降解性,是一种很有前景的导电金属生物材料。控制镁在生理环境中的快速降解仍然是临床转化面临的关键挑战。在本研究中,我们研究了导电聚(3,4 - 乙撑二氧噻吩)(PEDOT)涂层对镁基底降解行为及其细胞相容性的影响。人类胚胎干细胞(hESCs)被用作体外模型系统来研究细胞对镁降解的反应,因为它们很敏感,并且有可能分化为再生医学中许多感兴趣的细胞类型(例如神经元)。PEDOT通过电化学沉积法沉积在镁基底上。循环伏安法(CV)循环次数越多,在镁基底上形成的PEDOT涂层越厚。具体而言,由2、5和10次CV循环产生的涂层(分别表示为2× - PEDOT - Mg、5× - PEDOT - Mg和10× - PEDOT - Mg)的平均厚度分别为31、63和78 µm。与未涂层的镁样品相比,所有PEDOT涂层的镁样品降解速率均较慢,塔菲尔测试结果和培养后培养基中的镁离子浓度表明了这一点。在测试样品中,5× - PEDOT - Mg表现出最佳的涂层附着力和最慢的镁降解速度。此外,与未涂层的镁和2× - PEDOT - Mg相比,用5× - PEDOT - Mg样品培养时,hESCs存活时间最长。总体而言,本研究结果表明,在可生物降解的镁基植入物上使用PEDOT涂层用于潜在的神经记录、刺激和组织工程应用具有前景,从而鼓励进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验