Suppr超能文献

大肠杆菌 LptC 的功能特征:与 LPS 和合成配体的相互作用。

Functional characterization of E. coli LptC: interaction with LPS and a synthetic ligand.

出版信息

Chembiochem. 2014 Mar 21;15(5):734-42. doi: 10.1002/cbic.201300805.

Abstract

Lipopolysaccharide (LPS), the main cell-surface molecular constituent of Gram-negative bacteria, is synthesized in the inner membrane (IM) and transported to the outer membrane (OM) by the Lpt (lipopolysaccharide transport) machinery. Neosynthesized LPS is first flipped by MsbA across the IM, then transported to the OM by seven Lpt proteins located in the IM (LptBCFG), in the periplasm (LptA), and in the OM (LptDE). A functional OM is essential to bacterial viability and requires correct placement of LPS in the outer leaflet. Therefore, LPS biogenesis represents an ideal target for the development of novel antibiotics against Gram-negative bacteria. Although the structures of Lpt proteins have been elucidated, little is known about the mechanism of LPS transport, and few data are available on Lpt–LPS binding. We report here the first determination of the thermodynamic and kinetic parameters of the interaction between LptC and a fluorescent lipo-oligosaccharide (fLOS) in vitro. The apparent dissociation constant (Kd) of the fLOS–LptC interaction was evaluated by two independent methods. The first was based on fLOS capture by resin-immobilized LptC; the second used quenching of LptC intrinsic fluorescence by fLOS in solution. The Kd values by the two methods (71.4 and 28.8 μm, respectively) are very similar, and are of the same order of magnitude as that of the affinity of LOS for the upstream transporter, MsbA. Interestingly, both methods showed that fLOS binding to LptC is mostly irreversible, thus reflecting the fact that LPS can be released from LptC only when energy is supplied by ATP or in the presence of a higher-affinity LptA protein. A fluorescent glycolipid was synthesized: this also interacted irreversibly with LptC, but with lower affinity (apparent Kd=221 μM). This compound binds LptC at the LPS binding site and is a prototype for the development of new antibiotics targeting LPS transport in Gram-negative bacteria.

摘要

脂多糖(LPS)是革兰氏阴性菌表面的主要分子成分,在内膜(IM)中合成,并通过 Lpt(脂多糖转运)机制转运到外膜(OM)。新合成的 LPS 首先由 MsbA 翻转到 IM 中,然后由位于 IM 中的七种 Lpt 蛋白(LptBCFG)、周质(LptA)和 OM(LptDE)转运到 OM。功能性 OM 是细菌生存所必需的,需要将 LPS 正确放置在外层。因此,LPS 的生物合成是开发针对革兰氏阴性菌的新型抗生素的理想靶点。尽管已经阐明了 Lpt 蛋白的结构,但 LPS 转运的机制知之甚少,关于 Lpt-LPS 结合的数据也很少。我们在这里首次报道了体外测定 LptC 与荧光脂寡糖(fLOS)相互作用的热力学和动力学参数。通过两种独立的方法评估 fLOS-LptC 相互作用的表观解离常数(Kd)。第一种方法基于树脂固定化 LptC 捕获 fLOS;第二种方法使用溶液中 fLOS 对 LptC 固有荧光的猝灭。两种方法的 Kd 值(分别为 71.4 和 28.8 μm)非常相似,与 LOS 与上游转运蛋白 MsbA 的亲和力处于同一数量级。有趣的是,两种方法都表明 fLOS 与 LptC 的结合主要是不可逆的,这反映了 LPS 只能在提供 ATP 能量或存在更高亲和力的 LptA 蛋白的情况下才能从 LptC 中释放。合成了一种荧光糖脂:它也与 LptC 不可逆地相互作用,但亲和力较低(表观 Kd=221 μM)。这种化合物与 LPS 结合位点结合 LptC,是开发针对革兰氏阴性菌 LPS 转运的新型抗生素的原型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验