Suppr超能文献

细胞质ABC蛋白LptB与内膜LptC蛋白之间的功能相互作用,二者为大肠杆菌脂多糖转运机制的组成成分。

Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli.

作者信息

Martorana Alessandra M, Benedet Mattia, Maccagni Elisa A, Sperandeo Paola, Villa Riccardo, Dehò Gianni, Polissi Alessandra

机构信息

Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.

Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.

出版信息

J Bacteriol. 2016 Jul 28;198(16):2192-203. doi: 10.1128/JB.00329-16. Print 2016 Aug 15.

Abstract

UNLABELLED

The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery.

IMPORTANCE

The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a transenvelope complex. Here, we show that increased expression of the membrane-associated ABC protein LptB can suppress defects of LptC, which participates in the formation of the periplasmic bridge. This reveals functional interactions between these two components and supports a role of LptB in the assembly of the Lpt machine.

摘要

未标记

脂多糖(LPS)在外膜(OM)外小叶中的组装需要跨包膜Lpt(脂多糖转运)复合物,该复合物在大肠杆菌中由位于内膜(IM)(LptBCFG)、周质(LptA)和OM(LptDE)中的七种必需蛋白质组成。在IM处,LptBFG构成一个不寻常的ATP结合盒(ABC)转运蛋白,由跨膜LptFG蛋白和细胞质LptB ATP酶组成,据认为它从IM中提取LPS,并为其跨周质转运到细胞表面提供能量。LptC是一种小的IM双拓扑蛋白,它与LptBFG结合,并通过其N端和C端区域招募LptA,其在LPS输出中的作用尚未完全了解。在这里,我们表明lptB的表达水平是抑制LptC C端区域缺失致死性以及携带来自铜绿假单胞菌的高度分化的LptC直系同源物Pa-LptC的杂合Lpt机制功能的关键因素。我们发现LptB的过表达稳定了C端截短的LptC突变蛋白,从而允许形成足够数量的稳定IM复合物以支持生长。此外,LptB水平似乎对携带Pa-LptC的IM复合物的组装也很关键,否则该复合物在与大肠杆菌LptFG组分的相互作用中存在缺陷。总体而言,我们的数据表明LptB和LptC在功能上相互作用,并支持一个模型,即LptB在Lpt机制的组装中起关键作用。

重要性

革兰氏阴性菌的不对称外膜(OM)在其外小叶中含有一种不寻常的糖脂,即脂多糖(LPS)。LPS在很大程度上导致了OM独特的渗透屏障特性,阻止了许多抗生素的进入,从而使革兰氏阴性病原体难以治疗。在大肠杆菌中,LPS转运蛋白(Lpt机器)由七种必需蛋白质(LptABCDEFG)组成,它们形成一个跨包膜复合物。在这里,我们表明膜相关ABC蛋白LptB表达的增加可以抑制参与周质桥形成的LptC的缺陷。这揭示了这两个组分之间的功能相互作用,并支持LptB在Lpt机器组装中的作用。

相似文献

8
Functional characterization of E. coli LptC: interaction with LPS and a synthetic ligand.
Chembiochem. 2014 Mar 21;15(5):734-42. doi: 10.1002/cbic.201300805.

引用本文的文献

1
Advances in Helicobacter pylori lipopolysaccharide structure and function.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf034.
3
Phillygenin Inhibits by Preventing Biofilm Formation and Inducing ATP Leakage.
Front Microbiol. 2022 Apr 28;13:863624. doi: 10.3389/fmicb.2022.863624. eCollection 2022.
4
Lipopolysaccharide Transport System Links Physiological Roles of σ and ArcA in the Cell Envelope Biogenesis in Shewanella oneidensis.
Microbiol Spectr. 2021 Sep 3;9(1):e0069021. doi: 10.1128/Spectrum.00690-21. Epub 2021 Aug 18.
5
Structural basis of lipopolysaccharide extraction by the LptBFGC complex.
Nature. 2019 Mar;567(7749):486-490. doi: 10.1038/s41586-019-1025-6. Epub 2019 Mar 20.
7
More than Rotating Flagella: Lipopolysaccharide as a Secondary Receptor for Flagellotropic Phage 7-7-1.
J Bacteriol. 2018 Sep 10;200(19). doi: 10.1128/JB.00363-18. Print 2018 Oct 1.
8
Characterization of and lipopolysaccharide binding to the E. coli LptC protein dimer.
Protein Sci. 2018 Feb;27(2):381-389. doi: 10.1002/pro.3322. Epub 2017 Oct 28.

本文引用的文献

1
Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model.
Nat Rev Microbiol. 2016 Jun;14(6):337-45. doi: 10.1038/nrmicro.2016.25. Epub 2016 Mar 30.
3
The I-TASSER Suite: protein structure and function prediction.
Nat Methods. 2015 Jan;12(1):7-8. doi: 10.1038/nmeth.3213.
4
Prediction and analysis of intrinsically disordered proteins.
Methods Mol Biol. 2015;1261:35-59. doi: 10.1007/978-1-4939-2230-7_3.
5
Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport.
Biochem Biophys Res Commun. 2014 Sep 26;452(3):443-9. doi: 10.1016/j.bbrc.2014.08.094. Epub 2014 Aug 27.
6
Structural basis for lipopolysaccharide insertion in the bacterial outer membrane.
Nature. 2014 Jul 3;511(7507):108-11. doi: 10.1038/nature13484. Epub 2014 Jun 18.
7
Structural basis for outer membrane lipopolysaccharide insertion.
Nature. 2014 Jul 3;511(7507):52-6. doi: 10.1038/nature13464. Epub 2014 Jun 18.
8
Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4982-7. doi: 10.1073/pnas.1323516111. Epub 2014 Mar 17.
9
Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3612-21. doi: 10.1073/pnas.1312012110. Epub 2013 Sep 3.
10
Ralstonia solanacearum RSc0411 (lptC) is a determinant for full virulence and has a strain-specific novel function in the T3SS activity.
Microbiology (Reading). 2013 Jun;159(Pt 6):1136-1148. doi: 10.1099/mic.0.064915-0. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验