Suppr超能文献

使用上下文整合和判别模型的快速多器官分割

Rapid multi-organ segmentation using context integration and discriminative models.

作者信息

Lay Nathan, Birkbeck Neil, Zhang Jingdan, Zhou S Kevin

出版信息

Inf Process Med Imaging. 2013;23:450-62. doi: 10.1007/978-3-642-38868-2_38.

Abstract

We propose a novel framework for rapid and accurate segmentation of a cohort of organs. First, it integrates local and global image context through a product rule to simultaneously detect multiple landmarks on the target organs. The global posterior integrates evidence over all volume patches, while the local image context is modeled with a local discriminative classifier. Through non-parametric modeling of the global posterior, it exploits sparsity in the global context for efficient detection. The complete surface of the target organs is then inferred by robust alignment of a shape model to the resulting landmarks and finally deformed using discriminative boundary detectors. Using our approach, we demonstrate efficient detection and accurate segmentation of liver, kidneys, heart, and lungs in challenging low-resolution MR data in less than one second, and of prostate, bladder, rectum, and femoral heads in CT scans, in roughly one to three seconds and in both cases with accuracy fairly close to inter-user variability.

摘要

我们提出了一种用于快速准确分割一组器官的新型框架。首先,它通过乘积规则整合局部和全局图像上下文,以同时检测目标器官上的多个地标。全局后验整合了所有体积块上的证据,而局部图像上下文则由局部判别分类器建模。通过对全局后验进行非参数建模,它利用全局上下文中的稀疏性进行高效检测。然后,通过将形状模型稳健地对齐到所得地标来推断目标器官的完整表面,最后使用判别边界检测器进行变形。使用我们的方法,我们展示了在具有挑战性的低分辨率MR数据中,不到一秒钟就能高效检测并准确分割肝脏、肾脏、心脏和肺部,在CT扫描中,大约一到三秒钟就能检测并准确分割前列腺、膀胱、直肠和股骨头,并且在这两种情况下,准确率都相当接近用户间的变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验