Suppr超能文献

光漂白后荧光恢复法研究色谱介质中的蛋白质转运和交换。

Fluorescence recovery after photobleaching investigation of protein transport and exchange in chromatographic media.

机构信息

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.

出版信息

J Chromatogr A. 2014 May 2;1340:33-49. doi: 10.1016/j.chroma.2014.02.072. Epub 2014 Mar 4.

Abstract

A fully-mechanistic understanding of protein transport and sorption in chromatographic materials has remained elusive despite the application of modern continuum and molecular observation techniques. While measuring overall uptake rates in proteins in chromatographic media is relatively straightforward, quantifying mechanistic contributions is much more challenging. Further, at equilibrium in fully-loaded particles, measuring rates of kinetic exchange and diffusion can be very challenging. As models of multicomponent separations rely on accurate depictions of protein displacement and elution, a straightforward method is desired to measure the mobility of bound protein in chromatographic media. We have adapted fluorescence recovery after photobleaching (FRAP) methods to study transport and exchange of protein at equilibrium in a single particle. Further, we have developed a mathematical model to capture diffusion and desorption rates governing fluorescence recovery and investigate how these rates vary as a function of protein size, binding strength and media type. An emphasis is placed on explaining differences between polymer-modified and traditional media, which in the former case is characterized by rapid uptake, slow displacement and large elution pools, differences that have been postulated to result from steric and kinetic limitations. Finally, good qualitative agreement is achieved predicting flow confocal displacement profiles in polymer-modified materials, based solely on estimates of kinetic and diffusion parameters from FRAP observations.

摘要

尽管现代连续体和分子观测技术已经得到了应用,但对于蛋白质在色谱材料中的传输和吸附的完全机械理解仍然难以捉摸。虽然在色谱介质中测量蛋白质的总体吸收速率相对简单,但定量描述其机制贡献则更加困难。此外,在完全加载的颗粒中达到平衡时,测量动力学交换和扩散的速率可能会非常具有挑战性。由于多组分分离的模型依赖于对蛋白质置换和洗脱的准确描述,因此需要一种直接的方法来测量色谱介质中结合蛋白质的迁移率。我们已经采用荧光恢复后光漂白(FRAP)方法来研究单个颗粒中蛋白质在平衡状态下的传输和交换。此外,我们还开发了一种数学模型来捕获控制荧光恢复的扩散和解吸速率,并研究这些速率如何随蛋白质大小、结合强度和介质类型而变化。重点解释了聚合物改性和传统介质之间的差异,在前者中,其特征是快速吸收、缓慢置换和较大的洗脱池,这些差异被认为是由于空间和动力学限制所致。最后,仅基于 FRAP 观察得出的动力学和扩散参数的估计,就可以很好地定性预测聚合物改性材料中的流动共聚焦置换剖面。

相似文献

本文引用的文献

5
Shrinking-core modeling of binary chromatographic breakthrough.二元色谱穿透的收缩核模型。
J Chromatogr A. 2011 Apr 22;1218(16):2222-31. doi: 10.1016/j.chroma.2011.02.020. Epub 2011 Feb 16.
8
Understanding protein adsorption phenomena at solid surfaces.了解固-液界面蛋白质吸附现象。
Adv Colloid Interface Sci. 2011 Feb 17;162(1-2):87-106. doi: 10.1016/j.cis.2010.12.007. Epub 2011 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验