Suppr超能文献

超高场磁共振成像。

Magnetic resonance imaging at ultrahigh fields.

作者信息

Ugurbil Kamil

出版信息

IEEE Trans Biomed Eng. 2014 May;61(5):1364-79. doi: 10.1109/TBME.2014.2313619. Epub 2014 Mar 25.

Abstract

Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.

摘要

自1990年左右三个学术实验室引入4T人体系统以来,4T人体成像与光谱研究以及9.4T动物模型系统研究的迅速进展,促使在世纪之交引入7T及更高磁场用于人体研究。在这些平台上开展的工作已证明,在这些超高场强下,信噪比和生物信息含量存在显著优势,同时也存在诸多挑战。与低场强的主要区别在于偏离了近场状态;在超高场强下与氢共振条件对应的频率下,射频在人体中表现为衰减行波,这会导致在给定样本 - 线圈配置下由于干扰而产生图像不均匀性。这些不均匀性曾被认为对高场强成像的进展不利。然而,它们有利于信号接收和并行传输的并行成像,这两项关键技术在很大程度上促成了超高场强的成功。借助这些技术以及仪器和成像方法的改进,超高场强在脑功能和解剖结构成像方面取得了前所未有的进展,并开始涉足人体躯干和四肢的研究。尽管进展广泛,但鉴于对超高场研究以及开发越来越好的仪器和技术投入了越来越大的努力,这些进展仍只是未来发展的前奏。

相似文献

1
Magnetic resonance imaging at ultrahigh fields.
IEEE Trans Biomed Eng. 2014 May;61(5):1364-79. doi: 10.1109/TBME.2014.2313619. Epub 2014 Mar 25.
2
Imaging at ultrahigh magnetic fields: History, challenges, and solutions.
Neuroimage. 2018 Mar;168:7-32. doi: 10.1016/j.neuroimage.2017.07.007. Epub 2017 Jul 8.
3
The road to functional imaging and ultrahigh fields.
Neuroimage. 2012 Aug 15;62(2):726-35. doi: 10.1016/j.neuroimage.2012.01.134. Epub 2012 Feb 8.
4
Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas.
Magn Reson Med. 2018 Mar;79(3):1789-1803. doi: 10.1002/mrm.26803. Epub 2017 Jul 4.
5
Progress in Imaging the Human Torso at the Ultrahigh Fields of 7 and 10.5 T.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):e1-e19. doi: 10.1016/j.mric.2020.10.001.
7
Inherent insensitivity to RF inhomogeneity in FLASH imaging.
Magn Reson Med. 2004 Oct;52(4):927-31. doi: 10.1002/mrm.20217.
8
[Clinical high- and ultrahigh-field MR and its interaction with biological systems].
Radiologe. 2004 Jan;44(1):19-30. doi: 10.1007/s00117-003-0993-5.
9
Tailored RF pulse for magnetization inversion at ultrahigh field.
Magn Reson Med. 2010 Jan;63(1):51-8. doi: 10.1002/mrm.22167.

引用本文的文献

1
Factors Affecting the Quality of Non-contrast Coronary Magnetic Resonance Angiography Images: Challenges and Change.
Rev Cardiovasc Med. 2025 Aug 19;26(8):37487. doi: 10.31083/RCM37487. eCollection 2025 Aug.
4
Mesoscopic whole-brain T *-weighted and associated quantitative MRI in healthy humans at 10.5 T.
bioRxiv. 2025 Apr 24:2025.04.21.649819. doi: 10.1101/2025.04.21.649819.
7
T and T measurements of the neonatal brain at 7 T.
Magn Reson Med. 2025 May;93(5):2153-2162. doi: 10.1002/mrm.30403. Epub 2024 Dec 13.
10
RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5T.
Magn Reson Med. 2025 Feb;93(2):873-888. doi: 10.1002/mrm.30315. Epub 2024 Oct 16.

本文引用的文献

2
MRI at 7 Tesla and above: demonstrated and potential capabilities.
J Magn Reson Imaging. 2015 Jan;41(1):13-33. doi: 10.1002/jmri.24573. Epub 2014 Jan 30.
3
Functional connectomics from resting-state fMRI.
Trends Cogn Sci. 2013 Dec;17(12):666-82. doi: 10.1016/j.tics.2013.09.016. Epub 2013 Nov 12.
4
Cerebral cortical microinfarcts at 7Tesla MRI in patients with early Alzheimer's disease.
J Alzheimers Dis. 2014;39(1):163-7. doi: 10.3233/JAD-131040.
5
Cardiac imaging at 7 Tesla: Single- and two-spoke radiofrequency pulse design with 16-channel parallel excitation.
Magn Reson Med. 2013 Nov;70(5):1210-9. doi: 10.1002/mrm.24935. Epub 2013 Sep 10.
6
7 Tesla MR imaging: opportunities and challenges.
Rofo. 2014 Feb;186(2):121-9. doi: 10.1055/s-0033-1350406. Epub 2013 Aug 30.
7
Ultra-high resolution imaging of the human brain using acquisition-weighted imaging at 9.4T.
Neuroimage. 2014 Feb 1;86:592-8. doi: 10.1016/j.neuroimage.2013.08.013. Epub 2013 Aug 15.
8
Modular 32-channel transceiver coil array for cardiac MRI at 7.0T.
Magn Reson Med. 2014 Jul;72(1):276-90. doi: 10.1002/mrm.24903. Epub 2013 Jul 31.
9
Evaluation of slice accelerations using multiband echo planar imaging at 3 T.
Neuroimage. 2013 Dec;83:991-1001. doi: 10.1016/j.neuroimage.2013.07.055. Epub 2013 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验