Suppr超能文献

通往功能成像和超高场的道路。

The road to functional imaging and ultrahigh fields.

机构信息

Center for Magnetic Resonance Research, University of Minnesota, 2021 6th ST SE, Minneapolis, MN 55455-3007, USA.

出版信息

Neuroimage. 2012 Aug 15;62(2):726-35. doi: 10.1016/j.neuroimage.2012.01.134. Epub 2012 Feb 8.

Abstract

The Center for Magnetic Resonance (CMRR) at the University of Minnesota was one of the laboratories where the work that simultaneously and independently introduced functional magnetic resonance imaging (fMRI) of human brain activity was carried out. However, unlike other laboratories pursuing fMRI at the time, our work was performed at 4T magnetic field and coincided with the effort to push human magnetic resonance imaging to field strength significantly beyond 1.5T which was the high-end standard of the time. The human fMRI experiments performed in CMRR were planned between two colleagues who had known each other and had worked together previously in Bell Laboratories, namely Seiji Ogawa and myself, immediately after the Blood Oxygenation Level Dependent (BOLD) contrast was developed by Seiji. We were waiting for our first human system, a 4T system, to arrive in order to attempt at imaging brain activity in the human brain and these were the first experiments we performed on the 4T instrument in CMRR when it became marginally operational. This was a prelude to a subsequent systematic push we initiated for exploiting higher magnetic fields to improve the accuracy and sensitivity of fMRI maps, first going to 9.4T for animal model studies and subsequently developing a 7T human system for the first time. Steady improvements in high field instrumentation and ever expanding armamentarium of image acquisition and engineering solutions to challenges posed by ultrahigh fields have brought fMRI to submillimeter resolution in the whole brain at 7T, the scale necessary to reach cortical columns and laminar differentiation in the whole brain. The solutions that emerged in response to technological challenges posed by 7T also propagated and continues to propagate to lower field clinical systems, a major advantage of the ultrahigh fields effort that is underappreciated. Further improvements at 7T are inevitable. Further translation of these improvements to lower field clinical systems to achieve new capabilities and to magnetic fields significantly higher than 7T to enable human imaging is inescapable.

摘要

明尼苏达大学磁共振中心(CMRR)是同时独立开展人类大脑活动功能磁共振成像(fMRI)研究的实验室之一。然而,与当时其他从事 fMRI 研究的实验室不同,我们的工作是在 4T 磁场下进行的,恰逢将人类磁共振成像推向远高于当时高端标准 1.5T 的场强的努力。CMRR 进行的人类 fMRI 实验是由两位曾在贝尔实验室共事的同事策划的,他们是 Seiji Ogawa 和我自己。在 Seiji 开发出血氧水平依赖(BOLD)对比之后,我们立即着手准备第一套人类系统,即 4T 系统,以尝试对人类大脑的活动进行成像。当我们的 4T 仪器初步具备运行条件时,我们就在这台仪器上进行了第一批实验。这是我们随后发起的利用更高磁场提高 fMRI 图谱准确性和灵敏度的系统推进的前奏,首先在动物模型研究中使用 9.4T,随后首次开发了 7T 人类系统。高磁场仪器的稳步改进以及不断扩展的图像获取和工程解决方案的武器库,使 fMRI 在 7T 时能够达到全脑亚毫米分辨率,这是在全脑范围内达到皮质柱和层分化的必要规模。针对超高场带来的技术挑战而出现的解决方案也在向更低场临床系统传播,并继续传播,这是超高场研究的一个主要优势,但未得到充分认识。7T 还会有进一步的改进。将这些改进应用于更低场临床系统以实现新功能,并将磁场提高到远高于 7T 以实现人类成像,这是不可避免的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd59/3531996/2a992b78f806/nihms355907f1.jpg

相似文献

1
The road to functional imaging and ultrahigh fields.通往功能成像和超高场的道路。
Neuroimage. 2012 Aug 15;62(2):726-35. doi: 10.1016/j.neuroimage.2012.01.134. Epub 2012 Feb 8.
3
Ultra high resolution fMRI at ultra-high field.超高场下的超高分辨率 fMRI。
Neuroimage. 2012 Aug 15;62(2):1024-8. doi: 10.1016/j.neuroimage.2012.01.018. Epub 2012 Jan 9.
5
Spin-echo fMRI: The poor relation?自旋回波 fMRI:不受待见的那一位?
Neuroimage. 2012 Aug 15;62(2):1109-15. doi: 10.1016/j.neuroimage.2012.01.003. Epub 2012 Jan 8.
6
Multivariate pattern analysis of fMRI: the early beginnings.功能磁共振成像的多变量模式分析:早期起源。
Neuroimage. 2012 Aug 15;62(2):852-5. doi: 10.1016/j.neuroimage.2012.03.016. Epub 2012 Mar 9.
8
Multi-echo acquisition.多回波采集。
Neuroimage. 2012 Aug 15;62(2):665-71. doi: 10.1016/j.neuroimage.2011.10.057. Epub 2011 Oct 25.
9
The intravascular susceptibility effect and the underlying physiology of fMRI.血管内磁化率效应及 fMRI 的潜在生理学机制。
Neuroimage. 2012 Aug 15;62(2):995-9. doi: 10.1016/j.neuroimage.2012.01.113. Epub 2012 Jan 28.
10
The future of acquisition speed, coverage, sensitivity, and resolution.采集速度、覆盖范围、灵敏度和分辨率的未来。
Neuroimage. 2012 Aug 15;62(2):1221-9. doi: 10.1016/j.neuroimage.2012.02.077. Epub 2012 Mar 6.

引用本文的文献

2
HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations.人类大脑图谱:一个用于详细分割的活体 MRI 数据集。
Brain Struct Funct. 2023 Nov;228(8):1849-1863. doi: 10.1007/s00429-023-02653-8. Epub 2023 Jun 5.
3
Renal imaging at 5 T versus 3 T: a comparison study.5T与3T的肾脏成像:一项比较研究。
Insights Imaging. 2022 Sep 24;13(1):155. doi: 10.1186/s13244-022-01290-9.
4

本文引用的文献

3
Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T¹.颞叶癫痫中海马硬化:7T¹ 的发现。
Radiology. 2011 Oct;261(1):199-209. doi: 10.1148/radiol.11101651. Epub 2011 Jul 11.
10
Encoding and decoding in fMRI.功能磁共振成像中的编码和解码。
Neuroimage. 2011 May 15;56(2):400-10. doi: 10.1016/j.neuroimage.2010.07.073. Epub 2010 Aug 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验