School of Psychology, University of Ottawa ON, Canada.
Department of Physics, University of Ottawa ON, Canada.
Front Neural Circuits. 2014 Mar 20;8:22. doi: 10.3389/fncir.2014.00022. eCollection 2014.
Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons) can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.
大脑不同区域的突触连接模式的特征是存在突触基元,这些基元被定义为遵循特定构型并将小群神经元连接在一起的单向和双向突触接触。最近的计算工作提出,中继网络(两个通过第三中继神经元群体进行通信的群体)可以产生精确的神经同步模式。在这里,我们采用了两种不同的神经元动力学模型,并表明以这种方式设计的模拟神经电路陷入了活动的全局吸引子中,这使得神经元无法根据传入的刺激来调节其反应。为了避免出现固定的全局吸引子,我们提出了一种选择性增益抑制机制,以促进对外部刺激的灵活反应。我们认为,局部神经元电路可能会采用这种机制来产生精确的神经同步模式,其瞬态性质限制了短暂刺激的发生。