Bioengineering Department, George Mason University, Fairfax, VA 22030, USA.
Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA.
Int J Mol Sci. 2024 May 31;25(11):6059. doi: 10.3390/ijms25116059.
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.
利用具有数据驱动生理细节的计算模拟可以深入了解认知相关的神经机制。在这里,我们利用 Hippocampome.org 中的丰富细胞特性,通过内侧缰核皮层环路活动的脉冲连续吸引子网络模型来研究空间编码的神经机制。主要目标是研究是否可以添加这些真实的约束条件来产生类似于在真实神经元中测量到的放电模式。工作中包含的生物学特征包括神经元类型的兴奋性、连接性和突触信号传递,这些神经元类型主要由其轴突和树突形态定义。我们研究了特定神经元类型的脉冲动力学以及神经元群之间的突触活动。对啮齿动物海马体的建模使模拟保持在计算合理的规模,同时将参数和结果锚定到实验测量上。我们的模型生成的网格细胞活动与来自已发表数据集和为本研究新进行的实验的活体动物记录的网格场的间距、大小和放电率非常匹配。我们的模拟还再现了这些特性的不同尺度,例如在中间缰核皮层的背腹轴上发现的小和大尺度。对神经元和突触模型参数的计算探索表明,广泛的神经特性在模拟中产生了网格场。这些结果表明,网格细胞的连续吸引子网络模型与源自 Hippocampome.org 的基于数据驱动的生物物理和解剖学参数的脉冲神经网络实现兼容。该软件(版本 1.0)以开源形式发布,以实现广泛的社区重用并鼓励新的应用。