Suppr超能文献

基于结构的蛋白质功能位点计算预测方法

Structure-based Methods for Computational Protein Functional Site Prediction.

作者信息

Dukka B Kc

机构信息

Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA.

出版信息

Comput Struct Biotechnol J. 2013 Nov 11;8:e201308005. doi: 10.5936/csbj.201308005. eCollection 2013.

Abstract

Due to the advent of high throughput sequencing techniques and structural genomic projects, the number of gene and protein sequences has been ever increasing. Computational methods to annotate these genes and proteins are even more indispensable. Proteins are important macromolecules and study of the function of proteins is an important problem in structural bioinformatics. This paper discusses a number of methods to predict protein functional site especially focusing on protein ligand binding site prediction. Initially, a short overview is presented on recent advances in methods for selection of homologous sequences. Furthermore, a few recent structural based approaches and sequence-and-structure based approaches for protein functional sites are discussed in details.

摘要

由于高通量测序技术和结构基因组计划的出现,基因和蛋白质序列的数量一直在不断增加。注释这些基因和蛋白质的计算方法变得更加不可或缺。蛋白质是重要的大分子,蛋白质功能的研究是结构生物信息学中的一个重要问题。本文讨论了多种预测蛋白质功能位点的方法,尤其侧重于蛋白质配体结合位点的预测。首先,简要概述了同源序列选择方法的最新进展。此外,还详细讨论了一些基于结构的方法以及基于序列和结构的蛋白质功能位点预测方法。

相似文献

1
Structure-based Methods for Computational Protein Functional Site Prediction.基于结构的蛋白质功能位点计算预测方法
Comput Struct Biotechnol J. 2013 Nov 11;8:e201308005. doi: 10.5936/csbj.201308005. eCollection 2013.
2
7
Structure- and sequence-based function prediction for non-homologous proteins.基于结构和序列的非同源蛋白质功能预测
J Struct Funct Genomics. 2012 Jun;13(2):111-23. doi: 10.1007/s10969-012-9126-6. Epub 2012 Jan 22.
8
Enhancement of Plant Productivity in the Post-Genomics Era.后基因组时代植物生产力的提高
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
9
Heterotachy and functional shift in protein evolution.蛋白质进化中的异速进化与功能转变。
IUBMB Life. 2003 Apr-May;55(4-5):257-65. doi: 10.1080/1521654031000123330.

引用本文的文献

2
Efficient prediction of anticancer peptides through deep learning.通过深度学习高效预测抗癌肽
PeerJ Comput Sci. 2024 Jul 19;10:e2171. doi: 10.7717/peerj-cs.2171. eCollection 2024.
6
Defining A Global Map of Functional Group-based 3D Ligand-binding Motifs.定义基于功能基团的 3D 配体结合基序的全球图谱。
Genomics Proteomics Bioinformatics. 2022 Aug;20(4):765-779. doi: 10.1016/j.gpb.2021.08.014. Epub 2022 Mar 11.

本文引用的文献

5
Topology improves phylogenetic motif functional site predictions.拓扑结构可提高系统发育模体功能位点预测。
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):226-33. doi: 10.1109/TCBB.2009.60.
7
Parallelization of the MAFFT multiple sequence alignment program.MAFFT 多序列比对程序的并行化。
Bioinformatics. 2010 Aug 1;26(15):1899-900. doi: 10.1093/bioinformatics/btq224. Epub 2010 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验