Suppr超能文献

定义基于功能基团的 3D 配体结合基序的全球图谱。

Defining A Global Map of Functional Group-based 3D Ligand-binding Motifs.

机构信息

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China.

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China.

出版信息

Genomics Proteomics Bioinformatics. 2022 Aug;20(4):765-779. doi: 10.1016/j.gpb.2021.08.014. Epub 2022 Mar 11.

Abstract

Uncovering conserved 3D protein-ligand binding patterns on the basis of functional groups (FGs) shared by a variety of small molecules can greatly expand our knowledge of protein-ligand interactions. Despite that conserved binding patterns for a few commonly used FGs have been reported in the literature, large-scale identification and evaluation of FG-based 3D binding motifs are still lacking. Here, we propose a computational method, Automatic FG-based Three-dimensional Motif Extractor (AFTME), for automatic mapping of 3D motifs to different FGs of a specific ligand. Applying our method to 233 naturally-occurring ligands, we define 481 FG-binding motifs that are highly conserved across different ligand-binding pockets. Systematic analysis further reveals four main classes of binding motifs corresponding to distinct sets of FGs. Combinations of FG-binding motifs facilitate the binding of proteins to a wide spectrum of ligands with various binding affinities. Finally, we show that our FG-motif map can be used to nominate FGs that potentially bind to specific drug targets, thus providing useful insights and guidance for rational design of small-molecule drugs.

摘要

基于各种小分子共有的功能基团 (FGs) 揭示保守的 3D 蛋白质-配体结合模式,可以极大地扩展我们对蛋白质-配体相互作用的认识。尽管文献中已经报道了少数常用 FGs 的保守结合模式,但基于 FGs 的大规模 3D 结合基序的识别和评估仍然缺乏。在这里,我们提出了一种计算方法,即自动基于功能基团的三维基序提取器 (AFTME),用于将 3D 基序自动映射到特定配体的不同功能基团。将我们的方法应用于 233 种天然存在的配体,我们定义了 481 个在不同配体结合口袋中高度保守的功能基团结合基序。系统分析进一步揭示了与不同功能基团集对应的四个主要结合基序类别。FG 结合基序的组合促进了蛋白质与具有各种结合亲和力的广泛配体的结合。最后,我们表明,我们的 FG-基序图谱可用于提名可能与特定药物靶标结合的功能基团,从而为小分子药物的合理设计提供有用的见解和指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验