Suppr超能文献

受病毒启发的DNA纳米结构膜包裹以实现体内稳定性。

Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability.

作者信息

Perrault Steven D, Shih William M

机构信息

Wyss Institute for Biologically Inspired Engineering and ‡Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States .

出版信息

ACS Nano. 2014 May 27;8(5):5132-40. doi: 10.1021/nn5011914. Epub 2014 Apr 22.

Abstract

DNA nanotechnology enables engineering of molecular-scale devices with exquisite control over geometry and site-specific functionalization. This capability promises compelling advantages in advancing nanomedicine; nevertheless, instability in biological environments and innate immune activation remain as obstacles for in vivo application. Natural particle systems (i.e., viruses) have evolved mechanisms to maintain structural integrity and avoid immune recognition during infection, including encapsulation of their genome and protein capsid shell in a lipid envelope. Here we introduce virus-inspired enveloped DNA nanostructures as a design strategy for biomedical applications. Achieving a high yield of tightly wrapped unilamellar nanostructures, mimicking the morphology of enveloped virus particles, required precise control over the density of attached lipid conjugates and was achieved at 1 per ∼180 nm(2). Envelopment of DNA nanostructures in PEGylated lipid bilayers conferred protection against nuclease digestion. Immune activation was decreased 2 orders of magnitude below controls, and pharmacokinetic bioavailability improved by a factor of 17. By establishing a design strategy suitable for biomedical applications, we have provided a platform for the engineering of sophisticated, translation-ready DNA nanodevices.

摘要

DNA纳米技术能够对分子尺度的装置进行工程设计,从而对其几何形状和位点特异性功能化实现精确控制。这种能力有望在推进纳米医学方面带来引人注目的优势;然而,生物环境中的不稳定性和先天免疫激活仍然是体内应用的障碍。天然颗粒系统(即病毒)已经进化出在感染过程中维持结构完整性并避免免疫识别的机制,包括将其基因组和蛋白质衣壳包裹在脂质包膜中。在此,我们引入受病毒启发的包膜DNA纳米结构作为生物医学应用的一种设计策略。要实现高产率的紧密包裹的单层纳米结构,模仿包膜病毒颗粒的形态,需要精确控制附着的脂质共轭物的密度,并且在每~180 nm² 1个的条件下得以实现。将DNA纳米结构包裹在聚乙二醇化脂质双层中可提供针对核酸酶消化的保护。免疫激活比对照降低了2个数量级,药代动力学生物利用度提高了17倍。通过建立一种适用于生物医学应用的设计策略,我们提供了一个用于工程设计复杂的、可转化的DNA纳米装置的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47b9/4046785/4d2ec28ffe87/nn-2014-011914_0002.jpg

相似文献

1
Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability.
ACS Nano. 2014 May 27;8(5):5132-40. doi: 10.1021/nn5011914. Epub 2014 Apr 22.
2
Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.
Methods Mol Biol. 2017;1500:165-184. doi: 10.1007/978-1-4939-6454-3_12.
3
DNA nanostructures interacting with lipid bilayer membranes.
Acc Chem Res. 2014 Jun 17;47(6):1807-15. doi: 10.1021/ar500051r. Epub 2014 May 14.
4
Mimicking Photosynthesis with Electrode-Supported Lipid Nanoassemblies.
Acc Chem Res. 2016 Nov 15;49(11):2551-2559. doi: 10.1021/acs.accounts.6b00420. Epub 2016 Oct 19.
5
Binding of DNA origami to lipids: maximizing yield and switching via strand displacement.
Nucleic Acids Res. 2021 Nov 8;49(19):10835-10850. doi: 10.1093/nar/gkab888.
6
Integration of nanoassembly functions for an effective delivery cascade for cancer drugs.
Adv Mater. 2014 Dec 3;26(45):7615-21. doi: 10.1002/adma.201401554. Epub 2014 Oct 18.
7
Development of a liposomal formulation of the natural flavonoid fisetin.
Int J Pharm. 2012 Feb 14;423(1):69-76. doi: 10.1016/j.ijpharm.2011.04.066. Epub 2011 May 6.
8
Self-assembly of size-controlled liposomes on DNA nanotemplates.
Nat Chem. 2016 May;8(5):476-83. doi: 10.1038/nchem.2472. Epub 2016 Mar 21.
9
DNA-cholesterol barges as programmable membrane-exploring agents.
ACS Nano. 2014 Jun 24;8(6):5641-9. doi: 10.1021/nn500108k. Epub 2014 May 19.
10
Block Copolymer Micellization as a Protection Strategy for DNA Origami.
Angew Chem Int Ed Engl. 2017 May 8;56(20):5460-5464. doi: 10.1002/anie.201608873. Epub 2017 Mar 15.

引用本文的文献

1
All-in-one Biocomputing Nanoagents with Multilayered Transformable Architecture based on DNA Interfaces.
Theranostics. 2025 Jul 25;15(16):8451-8472. doi: 10.7150/thno.113059. eCollection 2025.
3
Stimuli-Responsive Oligolysine-PEG Coatings for Reductive-Triggered Decomplexation.
ACS Polym Au. 2025 May 22;5(4):343-352. doi: 10.1021/acspolymersau.5c00012. eCollection 2025 Aug 13.
5
Engineering Novel DNA Nanoarchitectures for Targeted Drug Delivery and Aptamer mediated Apoptosis in Cancer Therapeutics.
Adv Funct Mater. 2025 May 29;35(22). doi: 10.1002/adfm.202425394. Epub 2025 Feb 7.
6
DNA Nanostructures for Rational Regulation of Cellular Organelles.
JACS Au. 2025 Mar 26;5(4):1591-1616. doi: 10.1021/jacsau.5c00117. eCollection 2025 Apr 28.
7
Gel-Based Analysis of DNA Nanostructure Biostability.
Methods Mol Biol. 2025;2901:27-34. doi: 10.1007/978-1-0716-4394-5_3.
8
Nucleic Acid Framework-Enabled Spatial Organization for Biological Applications.
Chem Bio Eng. 2024 Dec 30;2(2):71-86. doi: 10.1021/cbe.4c00164. eCollection 2025 Feb 27.
9
Tailoring DNA Origami Protection: A Study of Oligolysine-PEG Coatings for Improved Colloidal, Structural, and Functional Integrity.
ACS Polym Au. 2024 Dec 20;5(1):35-44. doi: 10.1021/acspolymersau.4c00085. eCollection 2025 Feb 12.
10
A Practical Approach for Polarity and Quantity Controlled Assembly of Membrane Proteins into Nanoliposomes.
Chembiochem. 2025 Mar 15;26(6):e202401041. doi: 10.1002/cbic.202401041. Epub 2025 Feb 20.

本文引用的文献

1
2
Autonomous molecular cascades for evaluation of cell surfaces.
Nat Nanotechnol. 2013 Aug;8(8):580-6. doi: 10.1038/nnano.2013.142. Epub 2013 Jul 28.
3
Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger.
Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6854-7. doi: 10.1002/anie.201302759. Epub 2013 May 28.
4
A method to study in vivo stability of DNA nanostructures.
Methods. 2013 Nov;64(1):94-100. doi: 10.1016/j.ymeth.2013.04.002. Epub 2013 Apr 25.
5
Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.
Science. 2013 Feb 22;339(6122):971-5. doi: 10.1126/science.1229568.
6
Three-dimensional structures self-assembled from DNA bricks.
Science. 2012 Nov 30;338(6111):1177-83. doi: 10.1126/science.1227268.
7
Synthetic lipid membrane channels formed by designed DNA nanostructures.
Science. 2012 Nov 16;338(6109):932-6. doi: 10.1126/science.1225624.
8
Purification of DNA-origami nanostructures by rate-zonal centrifugation.
Nucleic Acids Res. 2013 Jan;41(2):e40. doi: 10.1093/nar/gks1070. Epub 2012 Nov 15.
9
Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.
Nat Nanotechnol. 2012 Jun 3;7(6):389-93. doi: 10.1038/nnano.2012.73.
10
A logic-gated nanorobot for targeted transport of molecular payloads.
Science. 2012 Feb 17;335(6070):831-4. doi: 10.1126/science.1214081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验