Perrault Steven D, Shih William M
Wyss Institute for Biologically Inspired Engineering and ‡Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States .
ACS Nano. 2014 May 27;8(5):5132-40. doi: 10.1021/nn5011914. Epub 2014 Apr 22.
DNA nanotechnology enables engineering of molecular-scale devices with exquisite control over geometry and site-specific functionalization. This capability promises compelling advantages in advancing nanomedicine; nevertheless, instability in biological environments and innate immune activation remain as obstacles for in vivo application. Natural particle systems (i.e., viruses) have evolved mechanisms to maintain structural integrity and avoid immune recognition during infection, including encapsulation of their genome and protein capsid shell in a lipid envelope. Here we introduce virus-inspired enveloped DNA nanostructures as a design strategy for biomedical applications. Achieving a high yield of tightly wrapped unilamellar nanostructures, mimicking the morphology of enveloped virus particles, required precise control over the density of attached lipid conjugates and was achieved at 1 per ∼180 nm(2). Envelopment of DNA nanostructures in PEGylated lipid bilayers conferred protection against nuclease digestion. Immune activation was decreased 2 orders of magnitude below controls, and pharmacokinetic bioavailability improved by a factor of 17. By establishing a design strategy suitable for biomedical applications, we have provided a platform for the engineering of sophisticated, translation-ready DNA nanodevices.
DNA纳米技术能够对分子尺度的装置进行工程设计,从而对其几何形状和位点特异性功能化实现精确控制。这种能力有望在推进纳米医学方面带来引人注目的优势;然而,生物环境中的不稳定性和先天免疫激活仍然是体内应用的障碍。天然颗粒系统(即病毒)已经进化出在感染过程中维持结构完整性并避免免疫识别的机制,包括将其基因组和蛋白质衣壳包裹在脂质包膜中。在此,我们引入受病毒启发的包膜DNA纳米结构作为生物医学应用的一种设计策略。要实现高产率的紧密包裹的单层纳米结构,模仿包膜病毒颗粒的形态,需要精确控制附着的脂质共轭物的密度,并且在每~180 nm² 1个的条件下得以实现。将DNA纳米结构包裹在聚乙二醇化脂质双层中可提供针对核酸酶消化的保护。免疫激活比对照降低了2个数量级,药代动力学生物利用度提高了17倍。通过建立一种适用于生物医学应用的设计策略,我们提供了一个用于工程设计复杂的、可转化的DNA纳米装置的平台。