Suppr超能文献

一种用于纵向连续和二元结局联合建模的贝叶斯共享参数模型。

A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes.

作者信息

Baghfalaki T, Ganjali M, Kabir A, Pazouki A

机构信息

Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.

Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

出版信息

J Appl Stat. 2020 Sep 18;49(3):638-655. doi: 10.1080/02664763.2020.1822303. eCollection 2022.

Abstract

Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.

摘要

纵向研究中相关混合生物标志物的联合建模通过提高参数估计效率带来更好的临床决策。在许多临床研究中,两种生物标志物的观察时间可能不等同,且其中一个纵向反应的记录时间可能比另一个更长。此外,反应变量可能具有不同的缺失模式。在本文中,我们通过考虑两个纵向结果的不同缺失模式,提出了一种新的相关连续和二元反应的联合模型。使用一个用于两个反应联合建模的条件模型,并针对两个反应的间歇性缺失考虑两个共享随机效应模型。采用基于马尔可夫链蒙特卡罗(MCMC)的贝叶斯方法进行参数估计和模型实现。通过一些模拟研究来研究所提出模型的验证和性能。所提出的模型还应用于分析一个减肥手术的真实数据集。

相似文献

1
A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes.
J Appl Stat. 2020 Sep 18;49(3):638-655. doi: 10.1080/02664763.2020.1822303. eCollection 2022.
3
Approximate Bayesian inference for joint linear and partially linear modeling of longitudinal zero-inflated count and time to event data.
Stat Methods Med Res. 2021 Jun;30(6):1484-1501. doi: 10.1177/09622802211002868. Epub 2021 Apr 19.
4
Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions.
J Biopharm Stat. 2014;24(4):834-55. doi: 10.1080/10543406.2014.903657.
5
Semiparametric multivariate joint model for skewed-longitudinal and survival data: A Bayesian approach.
Stat Med. 2023 Nov 30;42(27):4972-4989. doi: 10.1002/sim.9896. Epub 2023 Sep 5.
8
Bayesian joint modelling of longitudinal and time to event data: a methodological review.
BMC Med Res Methodol. 2020 Apr 26;20(1):94. doi: 10.1186/s12874-020-00976-2.
10
Joint modeling of zero-inflated longitudinal measurements and time-to-event outcomes with applications to dynamic prediction.
Stat Methods Med Res. 2024 Oct;33(10):1731-1767. doi: 10.1177/09622802241268466. Epub 2024 Oct 7.

引用本文的文献

1
Joint modelling of longitudinal data: a scoping review of methodology and applications for non-time to event data.
BMC Med Res Methodol. 2025 Feb 17;25(1):40. doi: 10.1186/s12874-025-02485-6.
2
Bayesian analysis of multivariate mixed longitudinal ordinal and continuous data.
Aust N Z J Stat. 2024 Sep;66(3):325-346. doi: 10.1111/anzs.12421. Epub 2024 Aug 13.

本文引用的文献

2
Bayesian methods for nonignorable dropout in joint models in smoking cessation studies.
J Am Stat Assoc. 2016;111(516):1454-1465. doi: 10.1080/01621459.2016.1167693. Epub 2017 Jan 5.
4
A semivarying joint model for longitudinal binary and continuous outcomes.
Can J Stat. 2016 Mar;44(1):44-57. doi: 10.1002/cjs.11273. Epub 2015 Nov 25.
5
Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events.
Stat Methods Med Res. 2016 Dec;25(6):2521-2540. doi: 10.1177/0962280214526199. Epub 2014 Nov 19.
6
Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions.
J Biopharm Stat. 2014;24(4):834-55. doi: 10.1080/10543406.2014.903657.
8
9
Bayesian latent variable models for mixed discrete outcomes.
Biostatistics. 2005 Jan;6(1):11-25. doi: 10.1093/biostatistics/kxh025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验