de Oliveira Gilson F, de Souza Cavalcante Hugo L D, di Lorenzo Orlando, Chevrollier Martine, Passerat de Silans Thierry, Oriá Marcos
Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil.
Departamento de Informática, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil.
Chaos. 2014 Mar;24(1):013105. doi: 10.1063/1.4861815.
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.
我们研究了通过线性反馈耦合的混沌电子电路中同步误差幅度的统计特性。根据耦合强度,我们的系统呈现出三种性质不同的同步状态:弱耦合产生独立振荡;中等至强耦合产生一种称为吸引子冒泡的间歇同步状态;更强的耦合产生完全同步。在中等耦合状态下,去同步事件大小的概率分布遵循幂律,其指数可通过改变耦合强度来调整。这种幂律分布很有趣,因为它们出现在许多复杂系统中。然而,大多数具有这种行为的系统幂律指数具有固定值,而在这里我们给出了一个幂律指数可在实时轻松调整的系统示例。