Suppr超能文献

通过将自组织映射应用于DNA微阵列数据库来发现可能的基因关系。

Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.

作者信息

Chavez-Alvarez Rocio, Chavoya Arturo, Mendez-Vazquez Andres

机构信息

Department of Information Systems CUCEA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.

Department of Electrical Engineering and Computer Science Campus Guadalajara, Cinvestav, Zapopan, Jalisco, Mexico.

出版信息

PLoS One. 2014 Apr 3;9(4):e93233. doi: 10.1371/journal.pone.0093233. eCollection 2014.

Abstract

DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques--an unsupervised artificial neural network called a Self-Organizing Map (SOM)-which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.

摘要

DNA微阵列和细胞周期同步实验使得通过在特定时间点同时监测数千个基因的表达水平来研究酿酒酵母细胞周期调控机制成为可能。另一方面,模式识别技术有助于分析如此大量的测量数据,提供一个贯穿细胞周期过程的基因表达水平演变模型。在本文中,我们提议使用其中一种技术——一种名为自组织映射(SOM)的无监督人工神经网络,它已成功应用于涉及非常嘈杂信号的过程,对其进行分类和组织,并协助发现行为模式,而无需关于所分析过程的先验知识。作为在寻找基因之间可能关系及其在某些生物过程中可能贡献时使用SOM的试验台,我们选择了282个酿酒酵母基因,这些基因已通过生物学实验证明在细胞周期中有活性。在用于该生物体细胞周期研究的五个被引用最多的时间序列DNA微阵列数据库中分析了这些基因的表达水平。通过使用SOM,有可能在沿着两个细胞周期的五个数据库中找到具有相似行为的基因簇。这一结果表明,其中一些基因可能在生物学上相关或可能具有调控关系,通过将用SOM获得的一些簇与先前使用蛋白质 - 蛋白质相互作用、基因表达水平、代谢动力学、启动子结合以及蛋白质修饰、调控和转运等生物学知识生成的调控网络进行比较得到了证实。本文所述方法可应用于研究不同生物体中其他生物过程的基因关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ae/3974722/1af7ec46d609/pone.0093233.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验