Nagao Yusuke, Suzuki Takao, Shimizu Atsushi, Kimura Tetsuaki, Seki Ryoko, Adachi Tomoko, Inoue Chikako, Omae Yoshihiro, Kamei Yasuhiro, Hara Ikuyo, Taniguchi Yoshihito, Naruse Kiyoshi, Wakamatsu Yuko, Kelsh Robert N, Hibi Masahiko, Hashimoto Hisashi
Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.
Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan.
PLoS Genet. 2014 Apr 3;10(4):e1004246. doi: 10.1371/journal.pgen.1004246. eCollection 2014 Apr.
Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor).
从多能祖细胞产生多种细胞类型的机制对正常发育至关重要。神经嵴细胞(NCCs)是多能干细胞,可产生多种细胞类型,包括色素细胞。青鳉有四种源自NCC的色素细胞(黄色素细胞、白色素细胞、黑色素细胞和虹彩细胞),这使得青鳉色素细胞发育成为研究从多能祖细胞控制不同细胞类型特化机制的优秀模型。青鳉多白色素细胞-3(ml-3)突变胚胎表现出独特的表型,其特征是白色素细胞过度形成且黄色素细胞缺失。我们发现ml-3编码sox5,它在迁移前的NCCs和分化中的黄色素细胞中表达。细胞移植研究揭示了sox5在黄色素细胞谱系中的细胞自主作用。pax7a在NCCs中表达,是黄色素细胞和白色素细胞谱系所必需的;我们证明Sox5在Pax7a的下游起作用。我们提出了一个模型,其中多能NCCs首先产生pax7a阳性的部分命运受限的黄色素细胞和白色素细胞中间祖细胞;这些祖细胞中的一些随后表达sox5,并且由于Sox5的作用发育成黄色素细胞。我们的结果首次证明Sox5可以作为分子开关,驱动从部分受限但仍然多能的祖细胞(共享的黄色素细胞-白色素细胞祖细胞)向特定细胞命运(黄色素细胞)的特化。