Suppr超能文献

啮齿动物先天性嗅觉行为的自动化分析

Automated analyses of innate olfactory behaviors in rodents.

作者信息

Qiu Qiang, Scott Aaron, Scheerer Hayley, Sapkota Nirjal, Lee Daniel K, Ma Limei, Yu C Ron

机构信息

Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.

Stowers Institute for Medical Research, Kansas City, Missouri, United States of America; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America.

出版信息

PLoS One. 2014 Apr 3;9(4):e93468. doi: 10.1371/journal.pone.0093468. eCollection 2014.

Abstract

Olfaction based behavioral experiments are important for the investigation of sensory coding, perception, decision making and memory formation. The predominant experimental paradigms employ forced choice operant assays, which require associative learning and reinforced training. Animal performance in these assays not only reflects odor perception but also the confidence in decision making and memory. In this study, we describe a versatile and automated setup, "Poking-Registered Olfactory Behavior Evaluation System" (PROBES), which can be adapted to perform multiple olfactory assays. In addition to forced choice assays, we employ this system to examine animal's innate ability for odor detection, discrimination and preference without elaborate training procedures. These assays provide quantitative measurements of odor discrimination and robust readouts of odor preference. Using PROBES, we find odor detection thresholds are at lower concentrations in naïve animals than those determined by forced choice assays. PROBES-based automated assays provide an efficient way of analyzing innate odor-triggered behaviors.

摘要

基于嗅觉的行为实验对于研究感觉编码、感知、决策和记忆形成非常重要。主要的实验范式采用强制选择操作测定法,这需要联想学习和强化训练。动物在这些测定中的表现不仅反映气味感知,还反映决策和记忆的信心。在本研究中,我们描述了一种通用的自动化装置,即“戳记记录嗅觉行为评估系统”(PROBES),它可用于执行多种嗅觉测定。除了强制选择测定外,我们还使用该系统来检查动物在无需复杂训练程序的情况下进行气味检测、辨别和偏好的先天能力。这些测定提供了气味辨别的定量测量和气味偏好的可靠读数。使用PROBES,我们发现未受过训练的动物的气味检测阈值比通过强制选择测定法确定的阈值更低。基于PROBES的自动化测定提供了一种分析先天气味触发行为的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d0/3974772/aa68852ef500/pone.0093468.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验