Suppr超能文献

虚拟儿科药代动力学试验中个体药物非依赖性系统参数的变化:将时变生理学引入儿科 PBPK 模型。

Changes in individual drug-independent system parameters during virtual paediatric pharmacokinetic trials: introducing time-varying physiology into a paediatric PBPK model.

机构信息

Simcyp Ltd (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK.

出版信息

AAPS J. 2014 May;16(3):568-76. doi: 10.1208/s12248-014-9592-9. Epub 2014 Apr 4.

Abstract

Although both POPPK and physiologically based pharmacokinetic (PBPK) models can account for age and other covariates within a paediatric population, they generally do not account for real-time growth and maturation of the individuals through the time course of drug exposure; this may be significant in prolonged neonatal studies. The major objective of this study was to introduce age progression into a paediatric PBPK model, to allow for continuous updating of anatomical, physiological and biological processes in each individual subject over time. The Simcyp paediatric PBPK model simulator system parameters were reanalysed to assess the impact of re-defining the individual over the study period. A schedule for re-defining parameters within the Simcyp paediatric simulator, for each subject, over a prolonged study period, was devised to allow seamless prediction of pharmacokinetics (PK). The model was applied to predict concentration-time data from multiday studies on sildenafil and phenytoin performed in neonates. Among PBPK system parameters, CYP3A4 abundance was one of the fastest changing covariates and a 1-h re-sampling schedule was needed for babies below age 3.5 days in order to seamlessly predict PK (<5% change in abundance) with subject maturation. The re-sampling frequency decreased as age increased, reaching biweekly by 6 months of age. The PK of both sildenafil and phenytoin were predicted better at the end of a prolonged study period using the time varying vs fixed PBPK models. Paediatric PBPK models which account for time-varying system parameters during prolonged studies may provide more mechanistic PK predictions in neonates and infants.

摘要

虽然 POPPK 和基于生理学的药代动力学(PBPK)模型都可以在儿科人群中考虑年龄和其他协变量,但它们通常无法在药物暴露过程中实时考虑个体的生长和成熟;这在长期新生儿研究中可能很重要。本研究的主要目的是将年龄进展纳入儿科 PBPK 模型中,以便随着时间的推移,在每个个体受试者中持续更新解剖学、生理学和生物学过程。重新分析了 Simcyp 儿科 PBPK 模型模拟器系统参数,以评估在研究期间重新定义个体对模型的影响。为了实现对 PK 的无缝预测,为每个受试者在长时间研究期间内的 Simcyp 儿科模拟器中重新定义参数制定了一个时间表。该模型应用于预测在新生儿中进行的西地那非和苯妥英多日研究的浓度-时间数据。在 PBPK 系统参数中,CYP3A4 丰度是变化最快的协变量之一,对于年龄在 3.5 天以下的婴儿,需要每 1 小时重新采样一次,以便随着个体成熟无缝预测 PK(丰度变化小于 5%)。随着年龄的增长,重新采样频率降低,到 6 个月时达到每两周一次。与使用固定 PBPK 模型相比,在长时间研究结束时,使用时变 PBPK 模型可以更好地预测西地那非和苯妥英的 PK。在长期研究中考虑时间变化的系统参数的儿科 PBPK 模型可能会为新生儿和婴儿提供更具机制性的 PK 预测。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验