Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA.
Hepatology. 2014 Sep;60(3):964-76. doi: 10.1002/hep.27082. Epub 2014 Jul 25.
Liver-specific β-catenin knockout (β-Catenin-LKO) mice have revealed an essential role of β-catenin in metabolic zonation where it regulates pericentral gene expression and in initiating liver regeneration (LR) after partial hepatectomy (PH), by regulating expression of Cyclin-D1. However, what regulates β-catenin activity in these events remains an enigma. Here we investigate to what extent β-catenin activation is Wnt-signaling-dependent and the potential cell source of Wnts. We studied liver-specific Lrp5/6 KO (Lrp-LKO) mice where Wnt-signaling was abolished in hepatocytes while the β-catenin gene remained intact. Intriguingly, like β-catenin-LKO mice, Lrp-LKO exhibited a defect in metabolic zonation observed as a lack of glutamine synthetase (GS), Cyp1a2, and Cyp2e1. Lrp-LKO also displayed a significant delay in initiation of LR due to the absence of β-catenin-TCF4 association and lack of Cyclin-D1. To address the source of Wnt proteins in liver, we investigated conditional Wntless (Wls) KO mice, which lacked the ability to secrete Wnts from either liver epithelial cells (Wls-LKO), or macrophages including Kupffer cells (Wls-MKO), or endothelial cells (Wls-EKO). While Wls-EKO was embryonic lethal precluding further analysis in adult hepatic homeostasis and growth, Wls-LKO and Wls-MKO were viable but did not show any defect in hepatic zonation. Wls-LKO showed normal initiation of LR; however, Wls-MKO showed a significant but temporal deficit in LR that was associated with decreased β-catenin-TCF4 association and diminished Cyclin-D1 expression.
Wnt-signaling is the major upstream effector of β-catenin activity in pericentral hepatocytes and during LR. Hepatocytes, cholangiocytes, or macrophages are not the source of Wnts in regulating hepatic zonation. However, Kupffer cells are a major contributing source of Wnt secretion necessary for β-catenin activation during LR.
肝脏特异性β-连环蛋白敲除(β-Catenin-LKO)小鼠揭示了β-连环蛋白在代谢分区中的重要作用,它通过调节细胞周期蛋白 D1 的表达来调节中央周围基因的表达,并在部分肝切除(PH)后启动肝再生(LR)。然而,在这些事件中调节β-连环蛋白活性的因素仍然是一个谜。在这里,我们研究了β-连环蛋白的激活在多大程度上依赖于 Wnt 信号,并研究了 Wnts 的潜在细胞来源。我们研究了肝脏特异性 Lrp5/6 敲除(Lrp-LKO)小鼠,其中肝细胞中的 Wnt 信号被废除,而β-连环蛋白基因保持完整。有趣的是,与β-连环蛋白-LKO 小鼠一样,Lrp-LKO 表现出代谢分区缺陷,表现为缺乏谷氨酰胺合成酶(GS)、Cyp1a2 和 Cyp2e1。由于缺乏β-连环蛋白-TCF4 结合和细胞周期蛋白 D1 缺乏,Lrp-LKO 也显示出 LR 启动的明显延迟。为了解决肝脏中 Wnt 蛋白的来源问题,我们研究了条件性 Wntless(Wls)敲除(KO)小鼠,这些小鼠缺乏从肝上皮细胞(Wls-LKO)或包括枯否细胞( Kupffer cells)在内的巨噬细胞(Wls-MKO)或内皮细胞(Wls-EKO)分泌 Wnt 的能力。虽然 Wls-EKO 在胚胎期致死,使成年肝内稳态和生长的进一步分析变得困难,但 Wls-LKO 和 Wls-MKO 是可行的,但在肝分区中没有任何缺陷。Wls-LKO 显示出正常的 LR 启动;然而,Wls-MKO 显示出 LR 的明显但暂时的缺陷,这与β-连环蛋白-TCF4 结合减少和细胞周期蛋白 D1 表达减少有关。
Wnt 信号是中央周围肝细胞中β-连环蛋白活性和 LR 过程中的主要上游效应物。肝细胞、胆管细胞或巨噬细胞不是调节肝分区的 Wnt 来源。然而,枯否细胞是 LR 过程中β-连环蛋白激活所需的 Wnt 分泌的主要来源。