Suppr超能文献

评估关节软骨和水凝胶的表观断裂韧性。

Evaluation of apparent fracture toughness of articular cartilage and hydrogels.

机构信息

Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA.

Mechanical Engineering, University of Kansas, Lawrence, KS, USA.

出版信息

J Tissue Eng Regen Med. 2017 Jan;11(1):121-128. doi: 10.1002/term.1892. Epub 2014 Apr 2.

Abstract

Recently, biomaterials-based tissue-engineering strategies, including the use of hydrogels, have offered great promise for repairing articular cartilage. Mechanical failure testing in outcome analyses is of crucial clinical importance to the success of engineered constructs. Interpenetrating networks (IPNs) are gaining more attention, due to their superior mechanical integrity. This study provided a combination testing method of apparent fracture toughness, which was applied to both articular cartilage and hydrogels. The apparent fracture toughnesses of two groups, hydrogels and articular cartilage, were evaluated based on the modified single-edge notch test and ASTM standards on the single-edge notch test and compact tension test. The results demonstrated that the toughness for articular cartilage (348 ± 43 MPa/mm ) was much higher than that for hydrogels. With a toughness value of 10.8 ± 1.4 MPa/mm , IPNs of agarose and poly(ethylene glycol) diacrylate (PEG-DA) looked promising. The IPNs were 1.4 times tougher than PEG-DA alone, although still over an order of magnitude less tough than cartilage. A new method was developed to evaluate hydrogels and cartilage in a manner that enabled a more relevant direct comparison for fracture testing of hydrogels for cartilage tissue engineering. Moreover, a target toughness value for cartilage of using this direct comparison method has been identified (348 ± 43 MPa/mm ), and the toughness discrepancy to be overcome between hydrogels and cartilage has been quantified. Copyright © 2014 John Wiley & Sons, Ltd.

摘要

最近,基于生物材料的组织工程策略,包括水凝胶的使用,为修复关节软骨提供了很大的希望。在工程构建体成功方面,机械失效测试在结果分析中具有至关重要的临床意义。互穿网络(IPN)由于其卓越的机械完整性而受到越来越多的关注。本研究提供了一种组合测试方法,即表观断裂韧性,该方法适用于关节软骨和水凝胶。根据改进的单边缺口试验和 ASTM 单边缺口试验和紧凑拉伸试验标准,评估了两组(水凝胶和关节软骨)的表观断裂韧性。结果表明,关节软骨的韧性(348±43 MPa/mm)明显高于水凝胶。琼脂糖和聚乙二醇二丙烯酸酯(PEG-DA)的 IPN 的韧性值为 10.8±1.4 MPa/mm,具有很大的应用前景。与单独的 PEG-DA 相比,IPN 的韧性提高了 1.4 倍,尽管仍比软骨低一个数量级。开发了一种新方法来评估水凝胶和软骨,以便能够更相关地直接比较用于软骨组织工程的水凝胶的断裂测试。此外,已经确定了使用这种直接比较方法的软骨的目标韧性值(348±43 MPa/mm),并且已经量化了水凝胶和软骨之间需要克服的韧性差异。版权所有©2014 约翰威立父子有限公司

相似文献

1
Evaluation of apparent fracture toughness of articular cartilage and hydrogels.
J Tissue Eng Regen Med. 2017 Jan;11(1):121-128. doi: 10.1002/term.1892. Epub 2014 Apr 2.
2
Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.
Biomaterials. 2013 Nov;34(33):8241-57. doi: 10.1016/j.biomaterials.2013.07.052. Epub 2013 Aug 6.
3
Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.
4
Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
Tissue Eng Part B Rev. 2013 Oct;19(5):403-12. doi: 10.1089/ten.TEB.2012.0461. Epub 2013 Apr 4.
5
Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.
Biomaterials. 2012 Oct;33(28):6682-90. doi: 10.1016/j.biomaterials.2012.06.005. Epub 2012 Jun 30.
7
Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.
Biomaterials. 2017 Mar;120:11-21. doi: 10.1016/j.biomaterials.2016.12.015. Epub 2016 Dec 20.
8
Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering.
J Biomed Mater Res A. 2018 Jan;106(1):192-200. doi: 10.1002/jbm.a.36222. Epub 2017 Sep 28.
9
Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
Acta Biomater. 2014 Aug;10(8):3409-20. doi: 10.1016/j.actbio.2014.04.013. Epub 2014 Apr 24.

引用本文的文献

1
Cracks in tensile-contracting and tensile-dilating poroelastic materials.
Int J Solids Struct. 2024 Jan 1;286-287. doi: 10.1016/j.ijsolstr.2023.112563. Epub 2023 Nov 13.

本文引用的文献

1
The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
Biomaterials. 2014 Apr;35(11):3558-70. doi: 10.1016/j.biomaterials.2014.01.002. Epub 2014 Jan 24.
2
Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
Tissue Eng Part B Rev. 2013 Oct;19(5):403-12. doi: 10.1089/ten.TEB.2012.0461. Epub 2013 Apr 4.
3
Incorporation of aggrecan in interpenetrating network hydrogels to improve cellular performance for cartilage tissue engineering.
Tissue Eng Part A. 2013 Jun;19(11-12):1349-59. doi: 10.1089/ten.TEA.2012.0160. Epub 2013 Mar 26.
5
BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING.
Can J Chem Eng. 2010 Dec;88(6):899-911. doi: 10.1002/cjce.20411.
6
Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.
7
Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
Osteoarthritis Cartilage. 2008 Sep;16(9):1074-82. doi: 10.1016/j.joca.2008.02.005. Epub 2008 Mar 18.
8
Tensile properties of the mandibular condylar cartilage.
J Biomech Eng. 2008 Feb;130(1):011009. doi: 10.1115/1.2838062.
9
Conceptual fracture parameters for articular cartilage.
Clin Biomech (Bristol). 2007 Jul;22(6):725-35. doi: 10.1016/j.clinbiomech.2007.03.005. Epub 2007 May 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验