Suppr超能文献

用于软骨组织工程的分级设计琼脂糖和聚(乙二醇)互穿网络水凝胶。

Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

机构信息

Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA.

出版信息

Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.

Abstract

A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.

摘要

开发了一种新的方法,用于将细胞封装在具有优异机械完整性的互穿网络(IPN)水凝胶中。在这项研究中,将两种生物相容性材料——琼脂糖和聚乙二醇(PEG)二丙烯酸酯——结合在一起,创建了一种具有大大增强机械性能的新型 IPN 水凝胶。对水凝胶样品的无约束压缩表明,与纯 PEG 二丙烯酸酯网络(39.9 kPa)相比,IPN 的剪切模量增加了四倍(39.9 kPa),与纯琼脂糖网络(8.2 kPa)相比,增加了四倍。PEG 和 IPN 的压缩失效应变分别为 71%±17%和 74%±17%,而纯琼脂糖凝胶的失效应变约为 15%。当 IPN 封装软骨细胞时,也观察到类似的机械性能提高,并且 LIVE/DEAD 细胞活力测定表明细胞在 IPN 封装过程中存活。大多数 IPN 封装的软骨细胞在封装后 1 周内仍保持存活,并且软骨细胞在封装后 3 周时表现出与琼脂糖封装的软骨细胞相当的糖胺聚糖合成。引入了一种新的方法,用于将细胞封装在具有增强机械性能的水凝胶中,这是朝着软骨缺陷修复迈出的有希望的一步。通过改变单体和聚合物的类型和浓度,并添加可降解序列或细胞粘附基团等功能基团,可以应用此方法来制造各种基于细胞的 IPN。此外,该技术可能适用于其他对含有细胞的水凝胶的机械完整性非常重要的基于细胞的应用。

相似文献

1
Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.
2
Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.
Biomaterials. 2013 Nov;34(33):8241-57. doi: 10.1016/j.biomaterials.2013.07.052. Epub 2013 Aug 6.
4
Incorporation of aggrecan in interpenetrating network hydrogels to improve cellular performance for cartilage tissue engineering.
Tissue Eng Part A. 2013 Jun;19(11-12):1349-59. doi: 10.1089/ten.TEA.2012.0160. Epub 2013 Mar 26.
5
The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
Biomaterials. 2014 Apr;35(11):3558-70. doi: 10.1016/j.biomaterials.2014.01.002. Epub 2014 Jan 24.
6
Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.
Biomed Mater. 2016 Jun 15;11(3):035014. doi: 10.1088/1748-6041/11/3/035014.
7
Evaluation of apparent fracture toughness of articular cartilage and hydrogels.
J Tissue Eng Regen Med. 2017 Jan;11(1):121-128. doi: 10.1002/term.1892. Epub 2014 Apr 2.
8
Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering.
J Mater Sci Mater Med. 2012 Sep;23(9):2267-79. doi: 10.1007/s10856-012-4684-5. Epub 2012 May 26.
9
Biomimetic bone-like composites as osteo-odonto-keratoprosthesis skirt substitutes.
J Biomater Appl. 2021 Mar;35(8):1043-1060. doi: 10.1177/0885328220972219. Epub 2020 Nov 11.
10
Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
Acta Biomater. 2014 Aug;10(8):3409-20. doi: 10.1016/j.actbio.2014.04.013. Epub 2014 Apr 24.

引用本文的文献

1
Current advancements in bio-ink technology for cartilage and bone tissue engineering.
Bone. 2023 Jun;171:116746. doi: 10.1016/j.bone.2023.116746. Epub 2023 Mar 23.
2
REVIEW ARTICLE Engineering bio-inks for 3D bioprinting cell mechanical microenvironment.
Int J Bioprint. 2022 Oct 29;9(1):632. doi: 10.18063/ijb.v9i1.632. eCollection 2023.
3
Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook.
3D Print Addit Manuf. 2022 Oct 1;9(5):435-449. doi: 10.1089/3dp.2020.0239. Epub 2022 Oct 10.
5
Addition of collagen type I in agarose created a dose-dependent effect on matrix production in engineered cartilage.
Regen Biomater. 2022 Aug 11;9:rbac048. doi: 10.1093/rb/rbac048. eCollection 2022.
6
Injectable three-dimensional tumor microenvironments to study mechanobiology in ovarian cancer.
Acta Biomater. 2022 Jul 1;146:222-234. doi: 10.1016/j.actbio.2022.04.039. Epub 2022 Apr 27.
8
Mixed Composition Microribbon Hydrogels Induce Rapid and Synergistic Cartilage Regeneration by Mesenchymal Stem Cells in 3D Paracrine Signaling Exchange.
ACS Biomater Sci Eng. 2020 Jul 13;6(7):4166-4178. doi: 10.1021/acsbiomaterials.0c00131. Epub 2020 Jun 5.
9
Biomimetic bone-like composites as osteo-odonto-keratoprosthesis skirt substitutes.
J Biomater Appl. 2021 Mar;35(8):1043-1060. doi: 10.1177/0885328220972219. Epub 2020 Nov 11.
10
Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering.
Polymers (Basel). 2020 May 18;12(5):1150. doi: 10.3390/polym12051150.

本文引用的文献

1
3
Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.
Biomaterials. 2009 Jan;30(2):196-207. doi: 10.1016/j.biomaterials.2008.09.041. Epub 2008 Oct 14.
4
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.
Osteoarthritis Cartilage. 2009 Mar;17(3):346-53. doi: 10.1016/j.joca.2008.07.004. Epub 2008 Aug 28.
6
Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications.
J Mater Sci Mater Med. 2009 Dec;20 Suppl 1:S173-9. doi: 10.1007/s10856-008-3504-4. Epub 2008 Jul 3.
8
Cell encapsulation in biodegradable hydrogels for tissue engineering applications.
Tissue Eng Part B Rev. 2008 Jun;14(2):149-65. doi: 10.1089/ten.teb.2007.0332.
9
Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing.
J Biomed Mater Res A. 2009 Jul;90(1):70-81. doi: 10.1002/jbm.a.32056.
10
Thermodynamic interactions in double-network hydrogels.
J Phys Chem B. 2008 Apr 3;112(13):3903-9. doi: 10.1021/jp710284e. Epub 2008 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验