Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA.
Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.
A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.
开发了一种新的方法,用于将细胞封装在具有优异机械完整性的互穿网络(IPN)水凝胶中。在这项研究中,将两种生物相容性材料——琼脂糖和聚乙二醇(PEG)二丙烯酸酯——结合在一起,创建了一种具有大大增强机械性能的新型 IPN 水凝胶。对水凝胶样品的无约束压缩表明,与纯 PEG 二丙烯酸酯网络(39.9 kPa)相比,IPN 的剪切模量增加了四倍(39.9 kPa),与纯琼脂糖网络(8.2 kPa)相比,增加了四倍。PEG 和 IPN 的压缩失效应变分别为 71%±17%和 74%±17%,而纯琼脂糖凝胶的失效应变约为 15%。当 IPN 封装软骨细胞时,也观察到类似的机械性能提高,并且 LIVE/DEAD 细胞活力测定表明细胞在 IPN 封装过程中存活。大多数 IPN 封装的软骨细胞在封装后 1 周内仍保持存活,并且软骨细胞在封装后 3 周时表现出与琼脂糖封装的软骨细胞相当的糖胺聚糖合成。引入了一种新的方法,用于将细胞封装在具有增强机械性能的水凝胶中,这是朝着软骨缺陷修复迈出的有希望的一步。通过改变单体和聚合物的类型和浓度,并添加可降解序列或细胞粘附基团等功能基团,可以应用此方法来制造各种基于细胞的 IPN。此外,该技术可能适用于其他对含有细胞的水凝胶的机械完整性非常重要的基于细胞的应用。