Suppr超能文献

用于组织工程的仿生梯度水凝胶

BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING.

作者信息

Sant Shilpa, Hancock Matthew J, Donnelly Joseph P, Iyer Dharini, Khademhosseini Ali

机构信息

Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139.

出版信息

Can J Chem Eng. 2010 Dec;88(6):899-911. doi: 10.1002/cjce.20411.

Abstract

During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell-material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell-material interactions in context with the long-term goals of tissue engineering.

摘要

在组织形态发生和内环境稳态过程中,细胞会感知其周围环境中的各种信号,包括物理和化学信号梯度。空间和时间梯度在发育、炎症、伤口愈合和癌症过程中调节各种细胞行为,如增殖、迁移和分化。功能组织工程的目标之一是通过在工程化三维(3D)支架中纳入物理、化学、时间和空间梯度,创建模仿体内细胞和组织复杂性的微环境。水凝胶是模仿细胞外基质(ECM)的3D组织支架的理想材料。材料科学、微尺度工程和微流体学中的各种技术被用于合成具有包封细胞和定制微环境的仿生水凝胶。特别是,存在许多方法可在水凝胶中纳入微米到厘米尺度的化学和物理梯度,以模仿体内发现的细胞信号。在本综述中,我们借助具体的生物学实例,将水凝胶梯度作为研究细胞-材料相互作用的工具。我们简要概述了生成梯度水凝胶的技术,并展示了它们在二维(2D)和3D环境中用于研究特定细胞行为的应用。我们通过结合组织工程的长期目标,总结梯度水凝胶和细胞-材料相互作用的当前和未来趋势来结束本文。

相似文献

1
BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING.
Can J Chem Eng. 2010 Dec;88(6):899-911. doi: 10.1002/cjce.20411.
2
Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
Acc Chem Res. 2017 Apr 18;50(4):703-713. doi: 10.1021/acs.accounts.6b00543. Epub 2017 Mar 27.
3
Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers.
Biomacromolecules. 2016 Jun 13;17(6):1985-97. doi: 10.1021/acs.biomac.6b00150. Epub 2016 May 27.
4
Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels.
Acta Biomater. 2019 Oct 1;97:385-398. doi: 10.1016/j.actbio.2019.07.040. Epub 2019 Jul 24.
5
6
Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering.
Biomater Sci. 2020 Jun 21;8(12):3248-3269. doi: 10.1039/d0bm00263a. Epub 2020 Jun 3.
7
Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients.
Crit Rev Biotechnol. 2016;36(3):553-65. doi: 10.3109/07388551.2014.993588. Epub 2015 Feb 2.
8
Fabrication of gradient hydrogels using a thermophoretic approach in microfluidics.
Biofabrication. 2024 Mar 4;16(2). doi: 10.1088/1758-5090/ad2b05.
9
Biomimetic gradient hydrogel with fibroblast spheroids for full-thickness skin regeneration.
Biomater Adv. 2025 Apr;169:214152. doi: 10.1016/j.bioadv.2024.214152. Epub 2024 Dec 16.
10
Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology.
Cells Tissues Organs. 2025;214(2):128-147. doi: 10.1159/000541416. Epub 2024 Sep 12.

引用本文的文献

2
Modular Multiwell Viscoelastic Hydrogel Platform for Two- and Three-Dimensional Cell Culture Applications.
ACS Biomater Sci Eng. 2024 May 13;10(5):3280-3292. doi: 10.1021/acsbiomaterials.4c00312. Epub 2024 Apr 12.
3
Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective.
Front Bioeng Biotechnol. 2023 Aug 22;11:1206806. doi: 10.3389/fbioe.2023.1206806. eCollection 2023.
4
Optimization of Media Change Intervals through Hydrogels Using Mathematical Models.
Biomacromolecules. 2023 Feb 13;24(2):604-612. doi: 10.1021/acs.biomac.2c00961. Epub 2023 Feb 1.
5
Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology.
Prog Polym Sci. 2019 Nov;98. doi: 10.1016/j.progpolymsci.2019.101147. Epub 2019 Jul 12.
6
Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications.
Polymers (Basel). 2022 Oct 17;14(20):4379. doi: 10.3390/polym14204379.
7
Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential.
Trends Biotechnol. 2023 Apr;41(4):511-527. doi: 10.1016/j.tibtech.2022.07.011. Epub 2022 Aug 19.
8
Bilayer Hydrogels for Wound Dressing and Tissue Engineering.
Polymers (Basel). 2022 Aug 1;14(15):3135. doi: 10.3390/polym14153135.
9
Synthetic developmental biology: Engineering approaches to guide multicellular organization.
Stem Cell Reports. 2022 Apr 12;17(4):715-733. doi: 10.1016/j.stemcr.2022.02.004. Epub 2022 Mar 10.
10
Passive Control of Silane Diffusion for Gradient Application of Surface Properties.
Micromachines (Basel). 2021 Nov 4;12(11):1360. doi: 10.3390/mi12111360.

本文引用的文献

1
Hydrogels in regenerative medicine.
Adv Mater. 2009 Sep 4;21(32-33):3307-29. doi: 10.1002/adma.200802106.
3
Controllable Soluble Protein Concentration Gradients in Hydrogel Networks.
Adv Funct Mater. 2008 Nov 1;18(21):3410-3417. doi: 10.1002/adfm.200800218.
5
Rapid generation of biologically relevant hydrogels containing long-range chemical gradients.
Adv Funct Mater. 2010;20(1):131-137. doi: 10.1002/adfm.200901311.
6
Self-organization of intracellular gradients during mitosis.
Cell Div. 2010 Jan 29;5(1):5. doi: 10.1186/1747-1028-5-5.
7
Controlling the porosity and microarchitecture of hydrogels for tissue engineering.
Tissue Eng Part B Rev. 2010 Aug;16(4):371-83. doi: 10.1089/ten.TEB.2009.0639.
8
The signaling mechanisms underlying cell polarity and chemotaxis.
Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a002980. doi: 10.1101/cshperspect.a002980.
9
Convection-driven generation of long-range material gradients.
Biomaterials. 2010 Mar;31(9):2686-94. doi: 10.1016/j.biomaterials.2009.12.012. Epub 2009 Dec 24.
10
Integration column: artificial ECM: expanding the cell biology toolbox in 3D.
Integr Biol (Camb). 2009 Mar;1(3):235-41. doi: 10.1039/b902243k. Epub 2009 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验