Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Science. 2014 Apr 4;344(6179):70-4. doi: 10.1126/science.1250169.
When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.
当现代传感器、电路、无线电和电源系统安装在皮肤上时,它们有可能在传统的医院或实验室设施之外提供持续使用的临床质量健康监测能力。然而,最成熟的组件技术,广泛地仅以坚硬的平面格式提供。因此,现有的系统设计选项无法有效地适应与皮肤的柔软、有纹理、弯曲和动态表面的集成。在这里,我们描述了使用软微流控、结构化粘附表面和受控机械屈曲的想法的实验和理论方法,以实现超软、高拉伸的系统,该系统包含高模量、刚性、最先进的功能元件的组装。其结果是一种薄的、顺应性的器件技术,可以柔和地层压到皮肤表面,以实现无线模式下的生理监测的高级多功能操作。