Suppr超能文献

一种基于机器学习的光谱主导多模态软可穿戴系统,用于植物胁迫的长期和早期诊断。

A machine-learning-powered spectral-dominant multimodal soft wearable system for long-term and early-stage diagnosis of plant stresses.

作者信息

Jiang Qin, Zhao Xin, Zhao Tiyong, Li Wenlong, Ye Jie, Dong Xingxing, Wang Xinyi, Liu Qingyu, Ding Han, Ye Zhibiao, Chen Xiaodong, Wu Zhigang

机构信息

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634 Singapore, Singapore.

出版信息

Sci Adv. 2025 Jun 27;11(26):eadw7279. doi: 10.1126/sciadv.adw7279.

Abstract

Addressing the global malnutrition crisis requires precise and timely diagnostics of plant stresses to enhance the quality and yield of nutrient-rich crops, such as tomatoes. Soft wearable sensors offer a promising approach by continuously monitoring plant physiology. However, challenges remain in identifying direct physiological indicators of plant stresses, hindering the development of accurate diagnostic models for predicting symptom progression. Here, we introduce a machine-learning-powered spectral-dominant multimodal soft wearable system (MapS-Wear) for precise, long-term, and early-stage diagnosis of stresses in tomatoes. MapS-Wear continuously tracks leaf surrounding temperature, humidity, and unique in-situ transmission spectra, which are critical stress-related indicators. The machine learning framework processes these multimodal data to predict gradual stress progression and diagnose nutrient deficiencies in plants over 10 days earlier than conventional computer vision methods. Moreover, MapS-Wears enables portable and large-scale screening of grafted tomato varieties in greenhouses, accelerating the identification of compatible grafting combinations. This demonstration highlights the potential for high-throughput plant phenotyping and yield improvement.

摘要

应对全球营养不良危机需要对植物胁迫进行精确及时的诊断,以提高营养丰富作物(如番茄)的品质和产量。柔性可穿戴传感器通过持续监测植物生理状况提供了一种很有前景的方法。然而,在识别植物胁迫的直接生理指标方面仍然存在挑战,这阻碍了用于预测症状进展的准确诊断模型的开发。在此,我们推出了一种由机器学习驱动的光谱主导多模态柔性可穿戴系统(MapS-Wear),用于对番茄胁迫进行精确、长期和早期诊断。MapS-Wear持续跟踪叶片周围温度、湿度以及独特的原位透射光谱,这些都是与胁迫相关的关键指标。机器学习框架处理这些多模态数据,以预测胁迫的逐渐进展,并比传统计算机视觉方法提前10多天诊断出植物的营养缺乏情况。此外,MapS-Wear能够对温室中的嫁接番茄品种进行便携式大规模筛选,加速兼容嫁接组合的识别。这一示范突出了高通量植物表型分析和提高产量的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ea4/12204154/12018d23939e/sciadv.adw7279-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验