Abdeen Amr A, Weiss Jared B, Lee Junmin, Kilian Kristopher A
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois.
Tissue Eng Part A. 2014 Oct;20(19-20):2737-45. doi: 10.1089/ten.TEA.2013.0661. Epub 2014 May 12.
The secretion of trophic factors that promote angiogenesis from mesenchymal stem cells (MSCs) is a promising cell-based therapeutic treatment. However, clinical efficacy has proved variable, likely on account of ill-defined cell delivery formulations and the inherent complexity of cellular secretion. Here we show how controlling the mechanical properties and protein composition of the extracellular matrix (ECM) surrounding MSCs can guide proangiogenic signaling. Conditioned media from MSCs adherent to polyacrylamide hydrogel functionalized with fibronectin, collagen I, or laminin was applied to 3D matrigel cultures containing human microvascular endothelial cells (HMVECs). The degree of tubulogenesis in HMVECs is shown to depend on both the substrate rigidity and matrix protein composition. MSCs cultured on fibronectin-modified hydrogels show a stiffness dependence in proangiogenic signaling with maximum influence on tubulogenesis observed from 40 kPa conditioned media, twofold higher than commercially available cocktails of growth factors. Quantitative real-time-polymerase chain reaction reveals stiffness-dependent expression of multiple factors involved in angiogenesis that corroborate the functional tubulogenesis assay. Restricting cell spreading with micropatterned surfaces attenuates the conditioned media effects; however, small-molecule inhibitors of actomyosin contractility do not significantly reduce the functional outcome. This work demonstrates how controlling matrix rigidity and protein composition can influence the secretory profile of MSCs. Model systems that deconstruct the physical and biochemical cues involved in MSC secretion may assist in the design of hydrogel biomaterials for cell-based therapies.
间充质干细胞(MSCs)分泌促进血管生成的营养因子是一种很有前景的基于细胞的治疗方法。然而,临床疗效已被证明存在差异,这可能是由于细胞递送制剂定义不明确以及细胞分泌的内在复杂性所致。在这里,我们展示了如何控制MSCs周围细胞外基质(ECM)的机械性能和蛋白质组成来引导促血管生成信号。将贴附在经纤连蛋白、I型胶原或层粘连蛋白功能化的聚丙烯酰胺水凝胶上的MSCs的条件培养基应用于含有人类微血管内皮细胞(HMVECs)的三维基质胶培养物中。结果表明,HMVECs中的管状形成程度取决于底物硬度和基质蛋白组成。在纤连蛋白修饰的水凝胶上培养的MSCs在促血管生成信号中表现出对硬度的依赖性,从40kPa条件培养基中观察到对管状形成的影响最大,比市售生长因子混合物高两倍。定量实时聚合酶链反应揭示了参与血管生成的多种因子的硬度依赖性表达,这与功能性管状形成试验结果相符。用微图案表面限制细胞铺展会减弱条件培养基的作用;然而,肌动球蛋白收缩性的小分子抑制剂并没有显著降低功能结果。这项工作展示了控制基质硬度和蛋白质组成如何影响MSCs的分泌谱。解构MSCs分泌过程中涉及的物理和生化线索的模型系统可能有助于设计用于基于细胞疗法的水凝胶生物材料。