Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA.
Biomaterials. 2013 Nov;34(33):8140-8. doi: 10.1016/j.biomaterials.2013.07.074. Epub 2013 Aug 7.
There is a dynamic relationship between physical and biochemical signals presented in the stem cell microenvironment to guide cell fate determination. Model systems that modulate cell geometry, substrate stiffness or matrix composition have proved useful in exploring how these signals influence stem cell fate. However, the interplay between these physical and biochemical cues during differentiation remains unclear. Here, we demonstrate a microengineering strategy to vary single cell geometry and the composition of adhesion ligands - on substrates that approximate the mechanical properties of soft tissues - to study adipogenesis and neurogenesis in adherent mesenchymal stem cells. Cells cultured in small circular islands show elevated expression of adipogenesis markers while cells that spread in anisotropic geometries tend to express elevated neurogenic markers. Arraying different combinations of matrix protein in a myriad of 2D and pseudo-3D geometries reveals optimal microenvironments for controlling the differentiation of stem cells to these "soft" lineages without the use of media supplements.
细胞外基质的物理和生化信号之间存在动态关系,这些信号可指导细胞命运的决定。调节细胞几何形状、基质硬度或基质组成的模型系统已被证明在探索这些信号如何影响干细胞命运方面非常有用。然而,在分化过程中这些物理和生化信号的相互作用尚不清楚。在这里,我们展示了一种微工程策略,可改变单个细胞的几何形状和粘附配体的组成-在模拟软组织力学特性的基质上-以研究贴壁间充质干细胞的脂肪生成和神经发生。在小圆形岛屿中培养的细胞表现出高水平的脂肪生成标志物表达,而在各向异性几何形状中扩散的细胞则倾向于表达高水平的神经生成标志物。在无数的 2D 和拟 3D 几何形状中排列不同组合的基质蛋白,可以揭示出在不使用培养基补充剂的情况下控制干细胞向这些“软”谱系分化的最佳微环境。