Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075 Göttingen, Germany.
Genes (Basel). 2014 Feb 27;5(1):97-105. doi: 10.3390/genes5010097.
Neuropsychiatric diseases ranging from schizophrenia to affective disorders and autism are heritable, highly complex and heterogeneous conditions, diagnosed purely clinically, with no supporting biomarkers or neuroimaging criteria. Relying on these "umbrella diagnoses", genetic analyses, including genome-wide association studies (GWAS), were undertaken but failed to provide insight into the biological basis of these disorders. "Risk genotypes" of unknown significance with low odds ratios of mostly <1.2 were extracted and confirmed by including ever increasing numbers of individuals in large multicenter efforts. Facing these results, we have to hypothesize that thousands of genetic constellations in highly variable combinations with environmental co-factors can cause the individual disorder in the sense of a final common pathway. This would explain why the prevalence of mental diseases is so high and why mutations, including copy number variations, with a higher effect size than SNPs, constitute only a small part of variance. Elucidating the contribution of normal genetic variation to (disease) phenotypes, and so re-defining disease entities, will be extremely labor-intense but crucial. We have termed this approach PGAS ("phenotype-based genetic association studies"). Ultimate goal is the definition of biological subgroups of mental diseases. For that purpose, the GRAS (Göttingen Research Association for Schizophrenia) data collection was initiated in 2005. With >3000 phenotypical data points per patient, it comprises the world-wide largest currently available schizophrenia database (N > 1200), combining genome-wide SNP coverage and deep phenotyping under highly standardized conditions. First PGAS results on normal genetic variants, relevant for e.g., cognition or catatonia, demonstrated proof-of-concept. Presently, an autistic subphenotype of schizophrenia is being defined where an unfortunate accumulation of normal genotypes, so-called pro-autistic variants of synaptic genes, explains part of the phenotypical variance. Deep phenotyping and comprehensive clinical data sets, however, are expensive and it may take years before PGAS will complement conventional GWAS approaches in psychiatric genetics.
神经精神疾病包括从精神分裂症到情感障碍和自闭症等,这些疾病具有遗传性、高度复杂性和异质性,仅通过临床诊断,没有支持的生物标志物或神经影像学标准。基于这些“伞式诊断”,进行了包括全基因组关联研究(GWAS)在内的遗传分析,但未能深入了解这些疾病的生物学基础。从这些分析中提取出具有未知意义的“风险基因型”,其优势比大多<1.2,通过纳入越来越多的个体,在大型多中心研究中得到了证实。面对这些结果,我们不得不假设,数千种遗传组合以高度可变的组合与环境共同作用,可以导致个体出现疾病,这是一种最终的共同途径。这就解释了为什么精神疾病的患病率如此之高,以及为什么包括拷贝数变异在内的突变,其效应大小高于单核苷酸多态性,仅构成了变异的一小部分。阐明正常遗传变异对(疾病)表型的贡献,从而重新定义疾病实体,将是极其费力但至关重要的。我们将这种方法称为 PGAS(“基于表型的遗传关联研究”)。最终目标是定义精神疾病的生物学亚群。为此,2005 年启动了 GRAS(哥廷根精神分裂症研究协会)数据收集。每个患者有>3000 个表型数据点,它包含了目前全球最大的可用精神分裂症数据库(N>1200),结合了全基因组 SNP 覆盖和高度标准化条件下的深度表型。关于正常遗传变异的首批 PGAS 结果,例如与认知或紧张症相关的结果,证明了这一方法的可行性。目前,正在定义精神分裂症的自闭症亚群,其中不幸的是,正常基因型的积累,即突触基因的“亲自闭症变异体”,解释了部分表型变异。然而,深度表型和全面的临床数据集成本高昂,PGAS 可能需要数年时间才能在精神遗传学中补充传统的 GWAS 方法。