1] Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA [2] Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.
Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.
Nat Nanotechnol. 2014 Jun;9(6):443-7. doi: 10.1038/nnano.2014.59. Epub 2014 Apr 6.
In an effort to scale down electronic devices to atomic dimensions, the use of transition-metal oxides may provide advantages over conventional semiconductors. Their high carrier densities and short electronic length scales are desirable for miniaturization, while strong interactions that mediate exotic phase diagrams open new avenues for engineering emergent properties. Nevertheless, understanding how their correlated electronic states can be manipulated at the nanoscale remains challenging. Here, we use angle-resolved photoemission spectroscopy to uncover an abrupt destruction of Fermi liquid-like quasiparticles in the correlated metal LaNiO₃ when confined to a critical film thickness of two unit cells. This is accompanied by the onset of an insulating phase as measured by electrical transport. We show how this is driven by an instability to an incipient order of the underlying quantum many-body system, demonstrating the power of artificial confinement to harness control over competing phases in complex oxides with atomic-scale precision.
为了将电子设备缩小到原子尺寸,使用过渡金属氧化物可能比传统半导体具有优势。它们的高载流子密度和短的电子长度尺度对于小型化是理想的,而介导奇异相图的强相互作用为工程新兴特性开辟了新途径。然而,了解如何在纳米尺度上操纵它们的关联电子态仍然具有挑战性。在这里,我们使用角分辨光发射光谱来揭示相关金属 LaNiO₃在限制到两个单元的临界薄膜厚度时,费米液体类准粒子的突然破坏。这伴随着电输运测量的绝缘相的出现。我们展示了这是如何由潜在量子多体系统的初始有序的不稳定性驱动的,证明了人工限制在利用原子级精度控制复杂氧化物中竞争相的强大能力。