Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
Nat Commun. 2017 Jun 8;8:15769. doi: 10.1038/ncomms15769.
Transition metal oxides host a wealth of exotic phenomena ranging from charge, orbital and magnetic order to nontrivial topological phases and superconductivity. In order to translate these unique materials properties into device functionalities these materials must be doped; however, the nature of carriers and their conduction mechanism at the atomic scale remain unclear. Recent angle-resolved photoelectron spectroscopy investigations provided insight into these questions, revealing that the carriers of prototypical metal oxides undergo a transition from a polaronic liquid to a Fermi liquid regime with increasing doping. Here, by performing ab initio many-body calculations of angle-resolved photoemission spectra of titanium dioxide, we show that this transition originates from non-adiabatic polar electron-phonon coupling, and occurs when the frequency of plasma oscillations exceeds that of longitudinal-optical phonons. This finding suggests that a universal mechanism may underlie polaron formation in transition metal oxides, and provides a pathway for engineering emergent properties in quantum matter.
过渡金属氧化物中存在着丰富的奇异现象,包括电荷、轨道和磁性有序,以及非平凡拓扑相和超导性。为了将这些独特的材料特性转化为器件功能,这些材料必须进行掺杂;然而,载流子的性质及其在原子尺度上的输运机制仍不清楚。最近的角分辨光电子能谱研究为此提供了一些见解,表明典型金属氧化物的载流子在掺杂过程中经历了从极化子液体到费米液体的转变。在这里,我们通过对二氧化钛的角分辨光发射谱进行第一性原理多体计算,表明这种转变源自非绝热极化电子-声子耦合,并且当等离子体振荡的频率超过纵光学声子的频率时发生。这一发现表明,在过渡金属氧化物中,可能存在一种普遍的机制来形成极化子,并为设计量子物质中的新兴特性提供了一种途径。