ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728 Hungary.
Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy.
Sci Rep. 2023 Mar 28;13(1):5056. doi: 10.1038/s41598-023-30686-w.
Interfacial magnetism and metal-insulator transition at LaNiO[Formula: see text]-based oxide interfaces have triggered intense research efforts, because of the possible implications in future heterostructure device design and engineering. Experimental observation lack in some points a support from an atomistic view. In an effort to fill such gap, we hereby investigate the structural, electronic, and magnetic properties of (LaNiO[Formula: see text])[Formula: see text]/(CaMnO[Formula: see text])[Formula: see text] superlattices with varying LaNiO[Formula: see text] thickness (n) using density functional theory including a Hubbard-type effective on-site Coulomb term. We successfully capture and explain the metal-insulator transition and interfacial magnetic properties, such as magnetic alignments and induced Ni magnetic moments which were recently observed experimentally in nickelate-based heterostructures. In the superlattices modeled in our study, an insulating state is found for n=1 and a metallic character for n=2, 4, with major contribution from Ni and Mn 3d states. The insulating character originates from the disorder effect induced by sudden environment change for the octahedra at the interface, and associated to localized electronic states; on the other hand, for larger n, less localized interfacial states and increased polarity of the LaNiO[Formula: see text] layers contribute to metallicity. We discuss how the interplay between double and super-exchange interaction via complex structural and charge redistributions results in interfacial magnetism. While (LaNiO[Formula: see text])[Formula: see text]/(CaMnO[Formula: see text])[Formula: see text] superlattices are chosen as prototype and for their experimental feasibility, our approach is generally applicable to understand the intricate roles of interfacial states and exchange mechanism between magnetic ions towards the overall response of a magnetic interface or superlattice.
基于 LaNiO[Formula: see text]的氧化物界面的界面磁性和金属-绝缘体转变引起了人们的浓厚兴趣,因为这可能对未来异质结构器件设计和工程具有重要意义。实验观察在某些方面缺乏原子观点的支持。为了填补这一空白,我们使用密度泛函理论(包括 Hubbard 型有效局域库仑项)研究了不同 LaNiO[Formula: see text]厚度(n)的(LaNiO[Formula: see text])[Formula: see text]/(CaMnO[Formula: see text])[Formula: see text]超晶格的结构、电子和磁性性质。我们成功地捕捉并解释了最近在镍酸盐基异质结构中实验观察到的金属-绝缘体转变和界面磁性性质,例如磁取向和诱导的 Ni 磁矩。在我们研究的超晶格中,n=1 时为绝缘态,n=2、4 时为金属态,主要来自 Ni 和 Mn 3d 态。绝缘特性源于界面处八面体环境突然变化引起的无序效应,以及与局域电子态有关的无序效应;另一方面,对于较大的 n,较少局域化的界面态和 LaNiO[Formula: see text]层的极性增加有助于金属性。我们讨论了通过复杂的结构和电荷重分布,双交换和超交换相互作用的相互作用如何导致界面磁性。虽然(LaNiO[Formula: see text])[Formula: see text]/(CaMnO[Formula: see text])[Formula: see text]超晶格被选为原型并具有实验可行性,但我们的方法通常适用于理解界面态和磁性离子之间的交换机制在磁性界面或超晶格整体响应中的复杂作用。