Suppr超能文献

基于钙成像数据的非负矩阵分解检测细胞。

Detecting cells using non-negative matrix factorization on calcium imaging data.

机构信息

Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G5-17 Nagatuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan.

School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.

出版信息

Neural Netw. 2014 Jul;55:11-9. doi: 10.1016/j.neunet.2014.03.007. Epub 2014 Mar 24.

Abstract

We propose a cell detection algorithm using non-negative matrix factorization (NMF) on Ca2+ imaging data. To apply NMF to Ca2+ imaging data, we use the bleaching line of the background fluorescence intensity as an a priori background constraint to make the NMF uniquely dissociate the background component from the image data. This constraint helps us to incorporate the effect of dye-bleaching and reduce the non-uniqueness of the solution. We demonstrate that in the case of noisy data, the NMF algorithm can detect cells more accurately than Mukamel's independent component analysis algorithm, a state-of-art method. We then apply the NMF algorithm to Ca2+ imaging data recorded on the local activities of subcellular structures of multiple cells in a wide area. We show that our method can decompose rapid transient components corresponding to somas and dendrites of many neurons, and furthermore, that it can decompose slow transient components probably corresponding to glial cells.

摘要

我们提出了一种基于非负矩阵分解 (NMF) 的细胞检测算法,用于钙成像数据。为了将 NMF 应用于钙成像数据,我们使用背景荧光强度的漂白线作为先验背景约束,使 NMF 能够从图像数据中唯一地分离背景分量。该约束有助于我们结合染料漂白的效果,减少解的非唯一性。我们证明,在存在噪声数据的情况下,NMF 算法比 Mukamel 的独立成分分析算法(一种最先进的方法)能够更准确地检测细胞。然后,我们将 NMF 算法应用于钙成像数据,这些数据记录了多个细胞在大面积内的亚细胞结构的局部活动。我们表明,我们的方法可以分解对应于许多神经元的体和树突的快速瞬变分量,并且可以分解可能对应于神经胶质细胞的缓慢瞬变分量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验