Xu Zhehao, Wu Yukun, Guan Jiangheng, Liang Shanshan, Pan Junxia, Wang Meng, Hu Qianshuo, Jia Hongbo, Chen Xiaowei, Liao Xiang
Advanced Institute for Brain and Intelligence, Medical College, Guangxi University, Nanning, China.
Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.
Front Cell Neurosci. 2023 Apr 6;17:1127847. doi: 10.3389/fncel.2023.1127847. eCollection 2023.
The development of two-photon microscopy and Ca indicators has enabled the recording of multiscale neuronal activities and thus advanced the understanding of brain functions. However, it is challenging to perform automatic, accurate, and generalized neuron segmentation when processing a large amount of imaging data. Here, we propose a novel deep-learning-based neural network, termed as NeuroSeg-II, to conduct automatic neuron segmentation for two-photon Ca imaging data. This network architecture is based on Mask region-based convolutional neural network (R-CNN) but has enhancements of an attention mechanism and modified feature hierarchy modules. We added an attention mechanism module to focus the computation on neuron regions in imaging data. We also enhanced the feature hierarchy to extract feature information at diverse levels. To incorporate both spatial and temporal information in our data processing, we fused the images from average projection and correlation map extracting the temporal information of active neurons, and the integrated information was expressed as two-dimensional (2D) images. To achieve a generalized neuron segmentation, we conducted a hybrid learning strategy by training our model with imaging data from different labs, including multiscale data with different Ca indicators. The results showed that our approach achieved promising segmentation performance across different imaging scales and Ca indicators, even including the challenging data of large field-of-view mesoscopic images. By comparing state-of-the-art neuron segmentation methods for two-photon Ca imaging data, we showed that our approach achieved the highest accuracy with a publicly available dataset. Thus, NeuroSeg-II enables good segmentation accuracy and a convenient training and testing process.
双光子显微镜和钙指示剂的发展使得多尺度神经元活动的记录成为可能,从而推动了对脑功能的理解。然而,在处理大量成像数据时,进行自动、准确且通用的神经元分割具有挑战性。在此,我们提出一种基于深度学习的新型神经网络,称为NeuroSeg-II,用于对双光子钙成像数据进行自动神经元分割。这种网络架构基于基于掩码区域的卷积神经网络(R-CNN),但增强了注意力机制并修改了特征层次模块。我们添加了一个注意力机制模块,将计算聚焦于成像数据中的神经元区域。我们还增强了特征层次,以提取不同层次的特征信息。为了在数据处理中纳入空间和时间信息,我们融合了来自平均投影和相关图的图像,提取活跃神经元的时间信息,并且将整合后的信息表示为二维(2D)图像。为了实现通用的神经元分割,我们采用了一种混合学习策略,用来自不同实验室的成像数据训练我们的模型,包括使用不同钙指示剂的多尺度数据。结果表明,我们的方法在不同成像尺度和钙指示剂下都取得了有前景的分割性能,甚至包括大视野介观图像的具有挑战性的数据。通过与用于双光子钙成像数据的最先进神经元分割方法进行比较,我们表明我们的方法在一个公开可用数据集上实现了最高的准确率。因此,NeuroSeg-II实现了良好的分割精度以及便捷的训练和测试过程。