State Key Laboratory for Manufacturing Systems Engineering, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
State Key Laboratory for Manufacturing Systems Engineering, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Comput Biol Med. 2015 May;60:32-9. doi: 10.1016/j.compbiomed.2015.02.010. Epub 2015 Feb 24.
Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio.
In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification.
Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method.
Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF.
The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint.
脑电图(EEG)提供了一种非侵入性的方法来测量脑神经元的电活动,长期以来一直被用于脑机接口(BCI)的开发。为此,需要提取 EEG 数据的各种模式/特征,并将其与特定事件(如提示驱动的运动想象)相关联。然而,这是一项具有挑战性的任务,因为 EEG 数据通常是非平稳的时间序列,信噪比低。
在这项研究中,我们提出了一种新方法,称为结构约束半非负矩阵分解(SCS-NMF),通过将事件相关电位(ERP)的均值包络作为半 NMF 过程的约束,从时域中提取 EEG 数据的关键模式。所提出的方法适用于一般的 EEG 时间序列,并且 SCS-NMF 提取的时间特征也可以与频域中的其他特征相结合,以提高运动想象分类的性能。
使用 SCS-NMF 方法进行运动想象分类的真实数据实验已经进行,结果清楚地表明了该方法的优越性。
还进行了比较实验。比较方法包括 ICA、PCA、半 NMF、小波、EMD 和 CSP,进一步验证了 SCS-NMF 的有效性。
SCS-NMF 方法可以获得优于或与最先进方法相当的性能,为从结构约束的角度进行脑模式分析提供了一种新的解决方案。