Am J Epidemiol. 2014 May 1;179(9):1134-42. doi: 10.1093/aje/kwu015. Epub 2014 Apr 4.
Complier average causal effects (CACE) estimate the impact of an intervention among treatment compliers in randomized trials. Methods used to estimate CACE have been outlined for parallel-arm trials (e.g., using an instrumental variables (IV) estimator) but not for other randomized study designs. Here, we propose a method for estimating CACE in randomized stepped wedge trials, where experimental units cross over from control conditions to intervention conditions in a randomized sequence. We illustrate the approach with a cluster-randomized drinking water trial conducted in rural Mexico from 2009 to 2011. Additionally, we evaluated the plausibility of assumptions required to estimate CACE using the IV approach, which are testable in stepped wedge trials but not in parallel-arm trials. We observed small increases in the magnitude of CACE risk differences compared with intention-to-treat estimates for drinking water contamination (risk difference (RD) = -22% (95% confidence interval (CI): -33, -11) vs. RD = -19% (95% CI: -26, -12)) and diarrhea (RD = -0.8% (95% CI: -2.1, 0.4) vs. RD = -0.1% (95% CI: -1.1, 0.9)). Assumptions required for IV analysis were probably violated. Stepped wedge trials allow investigators to estimate CACE with an approach that avoids the stronger assumptions required for CACE estimation in parallel-arm trials. Inclusion of CACE estimates in stepped wedge trials with imperfect compliance could enhance reporting and interpretation of the results of such trials.
在随机试验中,遵从者平均因果效应(CACE)估计了干预措施对治疗遵从者的影响。已经为平行臂试验(例如,使用工具变量(IV)估计量)概述了用于估计 CACE 的方法,但不适用于其他随机研究设计。在这里,我们提出了一种用于估计随机阶跃楔形试验中 CACE 的方法,其中实验单位以随机顺序从对照条件转变为干预条件。我们使用 2009 年至 2011 年在墨西哥农村进行的一项集群随机饮用水试验来说明该方法。此外,我们评估了使用 IV 方法估计 CACE 所需的假设的合理性,这些假设在阶跃楔形试验中是可以检验的,但在平行臂试验中则不行。我们观察到,与饮用水污染的意向治疗估计相比,CACE 风险差异的幅度略有增加(风险差异(RD)=-22%(95%置信区间(CI):-33,-11)与 RD=-19%(95%CI:-26,-12))和腹泻(RD=-0.8%(95%CI:-2.1,0.4)与 RD=-0.1%(95%CI:-1.1,0.9))。IV 分析所需的假设可能被违反了。阶跃楔形试验允许研究人员使用一种避免在平行臂试验中估计 CACE 所需的更强假设的方法来估计 CACE。在不完全遵守的阶跃楔形试验中包含 CACE 估计值可以增强对这些试验结果的报告和解释。