Am J Epidemiol. 2022 Jan 1;191(1):220-229. doi: 10.1093/aje/kwab238.
Noncompliance, a common problem in randomized clinical trials (RCTs), can bias estimation of the effect of treatment receipt using a standard intention-to-treat analysis. The complier average causal effect (CACE) measures the effect of an intervention in the latent subpopulation that would comply with their assigned treatment. Although several methods have been developed to estimate the CACE in analyzing a single RCT, methods for estimating the CACE in a meta-analysis of RCTs with noncompliance await further development. This article reviews the assumptions needed to estimate the CACE in a single RCT and proposes a frequentist alternative for estimating the CACE in a meta-analysis, using a generalized linear latent and mixed model with SAS software (SAS Institute, Inc.). The method accounts for between-study heterogeneity using random effects. We implement the methods and describe an illustrative example of a meta-analysis of 10 RCTs evaluating the effect of receiving epidural analgesia in labor on cesarean delivery, where noncompliance varies dramatically between studies. Simulation studies are used to evaluate the performance of the proposed method.
不依从,一种常见的随机临床试验(RCT)问题,可以通过使用标准的意向治疗分析来偏倚治疗效果的估计。遵从平均因果效应(CACE)衡量了在潜在亚人群中干预的效果,这些亚人群会遵守他们的分配治疗。尽管已经开发了几种方法来估计单一 RCT 中的 CACE,但仍需要进一步开发用于分析存在不依从性的 RCT 荟萃分析中 CACE 的方法。本文回顾了在单一 RCT 中估计 CACE 所需的假设,并提出了一种使用 SAS 软件(SAS Institute,Inc.)的广义线性潜在和混合模型的频率主义替代方法来估计荟萃分析中的 CACE。该方法使用随机效应来考虑研究间的异质性。我们实施了这些方法,并描述了一个在 10 项评估分娩时接受硬膜外镇痛对剖腹产影响的 RCT 荟萃分析的实例,其中研究之间的不依从性差异很大。模拟研究用于评估所提出方法的性能。