Multivariate Behav Res. 2005;40(3):373-400. doi: 10.1207/s15327906mbr4003_5.
Many important research hypotheses concern conditional relations in which the effect of one predictor varies with the value of another. Such relations are commonly evaluated as multiplicative interactions and can be tested in both fixed- and random-effects regression. Often, these interactive effects must be further probed to fully explicate the nature of the conditional relation. The most common method for probing interactions is to test simple slopes at specific levels of the predictors. A more general method is the Johnson-Neyman (J-N) technique. This technique is not widely used, however, because it is currently limited to categorical by continuous interactions in fixed-effects regression and has yet to be extended to the broader class of random-effects regression models. The goal of our article is to generalize the J-N technique to allow for tests of a variety of interactions that arise in both fixed- and random-effects regression. We review existing methods for probing interactions, explicate the analytic expressions needed to expand these tests to a wider set of conditions, and demonstrate the advantages of the J-N technique relative to simple slopes with three empirical examples.
许多重要的研究假说都涉及条件关系,其中一个预测因子的效果随另一个预测因子的值而变化。这种关系通常被评估为乘法交互作用,可以在固定效应和随机效应回归中进行检验。通常,这些交互作用必须进一步探究,以充分阐明条件关系的性质。探究交互作用最常用的方法是在预测因子的特定水平上检验简单斜率。更一般的方法是约翰逊-内曼(J-N)技术。然而,这种技术并没有被广泛使用,因为它目前仅限于固定效应回归中连续变量与分类变量的交互作用,尚未扩展到更广泛的随机效应回归模型类。我们文章的目标是推广 J-N 技术,以允许在固定效应和随机效应回归中检验各种交互作用。我们回顾了现有的交互作用探测方法,阐述了将这些测试扩展到更广泛的条件所需的分析表达式,并通过三个实证示例展示了 J-N 技术相对于简单斜率的优势。