Suppr超能文献

利用蛋白质-蛋白质相互作用预测孤儿全基因组关联研究(GWAS)基因的基因本体注释

Predicting gene ontology annotations of orphan GWAS genes using protein-protein interactions.

作者信息

Kuppuswamy Usha, Ananthasubramanian Seshan, Wang Yanli, Balakrishnan Narayanaswamy, Ganapathiraju Madhavi K

机构信息

Department of Biomedical Informatics and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Intelligent Systems Program, University of Pittsburgh, 5607 Baum Boulevard, Suite 501 (DBMI), Pittsburgh, PA 15213, USA.

出版信息

Algorithms Mol Biol. 2014 Apr 3;9(1):10. doi: 10.1186/1748-7188-9-10.

Abstract

BACKGROUND

The number of genome-wide association studies (GWAS) has increased rapidly in the past couple of years, resulting in the identification of genes associated with different diseases. The next step in translating these findings into biomedically useful information is to find out the mechanism of the action of these genes. However, GWAS studies often implicate genes whose functions are currently unknown; for example, MYEOV, ANKLE1, TMEM45B and ORAOV1 are found to be associated with breast cancer, but their molecular function is unknown.

RESULTS

We carried out Bayesian inference of Gene Ontology (GO) term annotations of genes by employing the directed acyclic graph structure of GO and the network of protein-protein interactions (PPIs). The approach is designed based on the fact that two proteins that interact biophysically would be in physical proximity of each other, would possess complementary molecular function, and play role in related biological processes. Predicted GO terms were ranked according to their relative association scores and the approach was evaluated quantitatively by plotting the precision versus recall values and F-scores (the harmonic mean of precision and recall) versus varying thresholds. Precisions of ~58% and ~ 40% for localization and functions respectively of proteins were determined at a threshold of ~30 (top 30 GO terms in the ranked list). Comparison with function prediction based on semantic similarity among nodes in an ontology and incorporation of those similarities in a k-nearest neighbor classifier confirmed that our results compared favorably.

CONCLUSIONS

This approach was applied to predict the cellular component and molecular function GO terms of all human proteins that have interacting partners possessing at least one known GO annotation. The list of predictions is available at http://severus.dbmi.pitt.edu/engo/GOPRED.html. We present the algorithm, evaluations and the results of the computational predictions, especially for genes identified in GWAS studies to be associated with diseases, which are of translational interest.

摘要

背景

在过去几年中,全基因组关联研究(GWAS)的数量迅速增加,从而鉴定出了与不同疾病相关的基因。将这些发现转化为具有生物医学用途的信息的下一步是弄清楚这些基因的作用机制。然而,GWAS研究常常涉及功能目前未知的基因;例如,发现MYEOV、ANKLE1、TMEM45B和ORAOV1与乳腺癌相关,但其分子功能未知。

结果

我们通过利用基因本体论(GO)的有向无环图结构和蛋白质-蛋白质相互作用(PPI)网络,对基因的GO术语注释进行贝叶斯推断。该方法基于这样一个事实设计:在生物物理上相互作用的两种蛋白质会彼此物理接近,具有互补的分子功能,并在相关生物过程中发挥作用。根据预测的GO术语的相对关联得分进行排序,并通过绘制精度与召回率值以及F分数(精度和召回率的调和平均值)与不同阈值的关系来定量评估该方法。在阈值约为30(排序列表中的前30个GO术语)时,分别确定蛋白质定位和功能的精度约为58%和40%。与基于本体中节点间语义相似性的功能预测以及在k近邻分类器中纳入这些相似性的比较证实,我们的结果更具优势。

结论

该方法被应用于预测所有具有至少一个已知GO注释的相互作用伙伴的人类蛋白质的细胞成分和分子功能GO术语。预测列表可在http://severus.dbmi.pitt.edu/engo/GOPRED.html获取。我们展示了该算法、评估以及计算预测结果,特别是对于在GWAS研究中鉴定出的与疾病相关的基因,这些结果具有转化研究价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ca4/4124845/85976a5468a5/1748-7188-9-10-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验