InBIO/CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal.
Spanish Scientific Council (CSIC), Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Moncada, Valencia, Spain.
PLoS One. 2018 May 23;13(5):e0197877. doi: 10.1371/journal.pone.0197877. eCollection 2018.
Understanding what determines species' geographic distributions is crucial for assessing global change threats to biodiversity. Measuring limits on distributions is usually, and necessarily, done with data at large geographic extents and coarse spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. 'community structure') reflects assembly processes occurring at small scales, and are often available for relatively extensive areas, so could be useful for explaining species distributions. We demonstrate that Bayesian Network Inference (BNI) can overcome several challenges to including community structure into studies of species distributions, despite having been little used to date. We hypothesized that the relative abundance of coexisting species can improve predictions of species distributions. In 1570 assemblages of 68 Mediterranean woody plant species we used BNI to incorporate community structure into Species Distribution Models (SDMs), alongside environmental information. Information on species associations improved SDM predictions of community structure and species distributions moderately, though for some habitat specialists the deviance explained increased by up to 15%. We demonstrate that most species associations (95%) were positive and occurred between species with ecologically similar traits. This suggests that SDM improvement could be because species co-occurrences are a proxy for local ecological processes. Our study shows that Bayesian Networks, when interpreted carefully, can be used to include local conditions into measurements of species' large-scale distributions, and this information can improve the predictions of species distributions.
理解是什么决定了物种的地理分布对于评估全球变化对生物多样性的威胁至关重要。通常(也是必要的),通过在大地理范围和粗空间分辨率下的数据来测量分布的限制。然而,个体的生存是由发生在小空间尺度上的过程决定的。共存物种的相对丰度(即“群落结构”)反映了在小尺度上发生的组装过程,而且通常可用于相对广泛的区域,因此对于解释物种分布可能很有用。我们证明,尽管贝叶斯网络推理(BNI)迄今为止使用较少,但它可以克服将群落结构纳入物种分布研究中的几个挑战。我们假设共存物种的相对丰度可以提高物种分布的预测。在 1570 个 68 种地中海木本植物的集合中,我们使用 BNI 将群落结构与环境信息一起纳入物种分布模型(SDM)。物种关联信息适度地改善了 SDM 对群落结构和物种分布的预测,尽管对于一些生境专家,解释的偏差增加了 15%。我们证明,大多数物种关联(95%)是阳性的,并且发生在生态特征相似的物种之间。这表明 SDM 的改进可能是因为物种共存是局部生态过程的代表。我们的研究表明,当仔细解释时,贝叶斯网络可以用于将局部条件纳入对物种大尺度分布的测量中,并且这些信息可以提高物种分布的预测。