Suppr超能文献

前列腺分割:一种基于三维经直肠超声和磁共振图像的轴对称高效凸优化方法。

Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-D TRUS and MR images.

出版信息

IEEE Trans Med Imaging. 2014 Apr;33(4):947-60. doi: 10.1109/TMI.2014.2300694.

Abstract

We propose a novel global optimization-based approach to segmentation of 3-D prostate transrectal ultrasound (TRUS) and T2 weighted magnetic resonance (MR) images, enforcing inherent axial symmetry of prostate shapes to simultaneously adjust a series of 2-D slice-wise segmentations in a "global" 3-D sense. We show that the introduced challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. In this regard, we propose a novel coherent continuous max-flow model (CCMFM), which derives a new and efficient duality-based algorithm, leading to a GPU-based implementation to achieve high computational speeds. Experiments with 25 3-D TRUS images and 30 3-D T2w MR images from our dataset, and 50 3-D T2w MR images from a public dataset, demonstrate that the proposed approach can segment a 3-D prostate TRUS/MR image within 5-6 s including 4-5 s for initialization, yielding a mean Dice similarity coefficient of 93.2%±2.0% for 3-D TRUS images and 88.5%±3.5% for 3-D MR images. The proposed method also yields relatively low intra- and inter-observer variability introduced by user manual initialization, suggesting a high reproducibility, independent of observers.

摘要

我们提出了一种新的基于全局优化的方法,用于分割三维经直肠超声(TRUS)和 T2 加权磁共振(MR)图像,同时调整一系列二维切片分割,以实现前列腺形状的固有轴对称。我们证明了所提出的具有挑战性的组合优化问题可以通过凸松弛全局且精确地解决。在这方面,我们提出了一种新的连贯连续最大流模型(CCMFM),该模型提出了一种新的、高效的基于对偶的算法,导致基于 GPU 的实现,以实现高计算速度。通过对来自我们数据集的 25 个 3D TRUS 图像和 30 个 3D T2w MR 图像,以及来自公共数据集的 50 个 3D T2w MR 图像进行实验,证明了该方法可以在 5-6 秒内分割三维前列腺 TRUS/MR 图像,其中初始化需要 4-5 秒,三维 TRUS 图像的平均骰子相似系数为 93.2%±2.0%,三维 MR 图像的平均骰子相似系数为 88.5%±3.5%。该方法还产生了由用户手动初始化引入的相对较低的观察者内和观察者间变异性,表明具有较高的可重复性,不依赖于观察者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验