Suppr超能文献

PSNet:基于卷积神经网络的MRI前列腺分割

PSNet: prostate segmentation on MRI based on a convolutional neural network.

作者信息

Tian Zhiqiang, Liu Lizhi, Zhang Zhenfeng, Fei Baowei

机构信息

Xi'an Jiaotong University, School of Software Engineering, Xi'an, China.

Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, Georgia, United States.

出版信息

J Med Imaging (Bellingham). 2018 Apr;5(2):021208. doi: 10.1117/1.JMI.5.2.021208. Epub 2018 Jan 17.

Abstract

Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.

摘要

磁共振成像(MRI)上前列腺的自动分割在前列腺癌诊断和治疗中有许多应用。我们提出了一种深度全卷积神经网络(CNN)来自动分割前列腺。我们的深度CNN模型在单个学习阶段进行端到端训练,该阶段使用前列腺MRI和相应的地面真值作为输入。学习到的CNN模型可用于进行逐像素分割的推理。在三个数据集上进行了实验,这些数据集包含140名患者的前列腺MRI。与手动标记的地面真值相比,所提出的前列腺分割CNN模型(PSNet)获得的平均骰子相似系数为[公式:见正文]。实验结果表明,所提出的模型能够在MRI上对前列腺进行令人满意的分割。

相似文献

1
PSNet: prostate segmentation on MRI based on a convolutional neural network.
J Med Imaging (Bellingham). 2018 Apr;5(2):021208. doi: 10.1117/1.JMI.5.2.021208. Epub 2018 Jan 17.
4
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.
AJR Am J Roentgenol. 2021 Jan;216(1):111-116. doi: 10.2214/AJR.19.22168. Epub 2020 Nov 10.
6
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.
Eur Radiol. 2023 Jul;33(7):5087-5096. doi: 10.1007/s00330-023-09410-9. Epub 2023 Jan 24.
7
Convolutional neural network for automated mass segmentation in mammography.
BMC Bioinformatics. 2020 Dec 9;21(Suppl 1):192. doi: 10.1186/s12859-020-3521-y.
9
Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.
J Med Imaging (Bellingham). 2017 Oct;4(4):041302. doi: 10.1117/1.JMI.4.4.041302. Epub 2017 Aug 21.
10
MRI-based prostate and dominant lesion segmentation using cascaded scoring convolutional neural network.
Med Phys. 2022 Aug;49(8):5216-5224. doi: 10.1002/mp.15687. Epub 2022 May 17.

引用本文的文献

1
Artificial intelligence in prostate cancer.
Chin Med J (Engl). 2025 Aug 5;138(15):1769-1782. doi: 10.1097/CM9.0000000000003689. Epub 2025 Jul 9.
2
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.
Radiol Artif Intell. 2024 Jul;6(4):e230138. doi: 10.1148/ryai.230138.
3
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning.
Eur Radiol. 2023 Sep;33(9):6548-6556. doi: 10.1007/s00330-023-09827-2. Epub 2023 Jun 20.
5
A review of artificial intelligence in prostate cancer detection on imaging.
Ther Adv Urol. 2022 Oct 10;14:17562872221128791. doi: 10.1177/17562872221128791. eCollection 2022 Jan-Dec.
6
A Survey on Human Cancer Categorization Based on Deep Learning.
Front Artif Intell. 2022 Jun 27;5:884749. doi: 10.3389/frai.2022.884749. eCollection 2022.
7
Automatic Segmentation of the Prostate on MR Images based on Anatomy and Deep Learning.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11598. doi: 10.1117/12.2581893. Epub 2021 Feb 15.
9
Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use.
J Med Imaging (Bellingham). 2022 Mar;9(2):024001. doi: 10.1117/1.JMI.9.2.024001. Epub 2022 Mar 14.
10
Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities.
Diagnostics (Basel). 2022 Jan 24;12(2):289. doi: 10.3390/diagnostics12020289.

本文引用的文献

1
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
2
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
3
Large scale deep learning for computer aided detection of mammographic lesions.
Med Image Anal. 2017 Jan;35:303-312. doi: 10.1016/j.media.2016.07.007. Epub 2016 Aug 2.
4
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
5
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
6
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
7
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
IEEE Trans Med Imaging. 2016 Apr;35(4):1077-89. doi: 10.1109/TMI.2015.2508280. Epub 2015 Dec 11.
8
Superpixel-Based Segmentation for 3D Prostate MR Images.
IEEE Trans Med Imaging. 2016 Mar;35(3):791-801. doi: 10.1109/TMI.2015.2496296. Epub 2015 Oct 30.
9
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
Neuroimage. 2015 Mar;108:214-24. doi: 10.1016/j.neuroimage.2014.12.061. Epub 2015 Jan 3.
10
Computer-aided detection of prostate cancer in MRI.
IEEE Trans Med Imaging. 2014 May;33(5):1083-92. doi: 10.1109/TMI.2014.2303821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验