Qiu Wu, Yuan Jing, Kishimoto Jessica, McLeod Jonathan, Chen Yimin, de Ribaupierre Sandrine, Fenster Aaron
Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
Ultrasound Med Biol. 2015 Feb;41(2):542-56. doi: 10.1016/j.ultrasmedbio.2014.09.019. Epub 2014 Dec 23.
A three-dimensional (3-D) ultrasound (US) system has been developed to monitor the intracranial ventricular system of preterm neonates with intraventricular hemorrhage (IVH) and the resultant dilation of the ventricles (ventriculomegaly). To measure ventricular volume from 3-D US images, a semi-automatic convex optimization-based approach is proposed for segmentation of the cerebral ventricular system in preterm neonates with IVH from 3-D US images. The proposed semi-automatic segmentation method makes use of the convex optimization technique supervised by user-initialized information. Experiments using 58 patient 3-D US images reveal that our proposed approach yielded a mean Dice similarity coefficient of 78.2% compared with the surfaces that were manually contoured, suggesting good agreement between these two segmentations. Additional metrics, the mean absolute distance of 0.65 mm and the maximum absolute distance of 3.2 mm, indicated small distance errors for a voxel spacing of 0.22 × 0.22 × 0.22 mm(3). The Pearson correlation coefficient (r = 0.97, p < 0.001) indicated a significant correlation of algorithm-generated ventricular system volume (VSV) with the manually generated VSV. The calculated minimal detectable difference in ventricular volume change indicated that the proposed segmentation approach with 3-D US images is capable of detecting a VSV difference of 6.5 cm(3) with 95% confidence, suggesting that this approach might be used for monitoring IVH patients' ventricular changes using 3-D US imaging. The mean segmentation times of the graphics processing unit (GPU)- and central processing unit-implemented algorithms were 50 ± 2 and 205 ± 5 s for one 3-D US image, respectively, in addition to 120 ± 10 s for initialization, less than the approximately 35 min required by manual segmentation. In addition, repeatability experiments indicated that the intra-observer variability ranges from 6.5% to 7.5%, and the inter-observer variability is 8.5% in terms of the coefficient of variation of the Dice similarity coefficient. The intra-class correlation coefficient for ventricular system volume measurements for each independent observer ranged from 0.988 to 0.996 and was 0.945 for three different observers. The coefficient of variation and intra-class correlation coefficient revealed that the intra- and inter-observer variability of the proposed approach introduced by the user initialization was small, indicating good reproducibility, independent of different users.
已开发出一种三维(3-D)超声(US)系统,用于监测患有脑室内出血(IVH)的早产儿的颅内脑室系统以及由此导致的脑室扩张(脑室扩大)。为了从三维超声图像测量脑室容积,提出了一种基于半自动凸优化的方法,用于从三维超声图像中分割患有IVH的早产儿的脑室系统。所提出的半自动分割方法利用了由用户初始化信息监督的凸优化技术。使用58例患者的三维超声图像进行的实验表明,与手动勾勒的表面相比,我们提出的方法产生的平均骰子相似系数为78.2%,表明这两种分割之间具有良好的一致性。其他指标,平均绝对距离为0.65毫米,最大绝对距离为3.2毫米,表明对于0.22×0.22×0.22毫米³的体素间距,距离误差较小。皮尔逊相关系数(r = 0.97,p < 0.001)表明算法生成的脑室系统容积(VSV)与手动生成的VSV具有显著相关性。计算得出的脑室容积变化的最小可检测差异表明,所提出的三维超声图像分割方法能够以95%的置信度检测到6.5立方厘米的VSV差异,这表明该方法可能用于使用三维超声成像监测IVH患者的脑室变化。图形处理单元(GPU)和中央处理器实现的算法对一幅三维超声图像的平均分割时间分别为50±2秒和205±5秒,此外初始化时间为120±10秒,少于手动分割所需的约35分钟。此外,重复性实验表明,观察者内变异性范围为6.5%至7.5%,观察者间变异性在骰子相似系数的变异系数方面为8.5%。每个独立观察者的脑室系统容积测量的组内相关系数范围为0.988至0.996,三个不同观察者的组内相关系数为0.945。变异系数和组内相关系数表明,用户初始化引入的所提出方法的观察者内和观察者间变异性较小,表明具有良好的可重复性,与不同用户无关。