Suppr超能文献

古菌 Cdc48*20S 蛋白酶体的结构与组装。

Architecture and assembly of the archaeal Cdc48*20S proteasome.

机构信息

Departments of Biology and Earth and Planetary Sciences and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):E1687-94. doi: 10.1073/pnas.1404823111. Epub 2014 Apr 7.

Abstract

ATP-dependent proteases maintain protein quality control and regulate diverse intracellular functions. Proteasomes are primarily responsible for these tasks in the archaeal and eukaryotic domains of life. Even the simplest of these proteases function as large complexes, consisting of the 20S peptidase, a barrel-like structure composed of four heptameric rings, and one or two AAA+ (ATPase associated with a variety of cellular activities) ring hexamers, which use cycles of ATP binding and hydrolysis to unfold and translocate substrates into the 20S proteolytic chamber. Understanding how the AAA+ and 20S components of these enzymes interact and collaborate to execute protein degradation is important, but the highly dynamic nature of prokaryotic proteasomes has hampered structural characterization. Here, we use electron microscopy to determine the architecture of an archaeal Cdc48 ⋅ 20S proteasome, which we stabilized by site-specific cross-linking. This complex displays coaxial alignment of Cdc48 and 20S and is enzymatically active, demonstrating that AAA+ unfoldase wobbling with respect to 20S is not required for function. In the complex, the N-terminal domain of Cdc48, which regulates ATP hydrolysis and degradation, packs against the D1 ring of Cdc48 in a coplanar fashion, constraining mechanisms by which the N-terminal domain alters 20S affinity and degradation activity.

摘要

ATP 依赖的蛋白酶维持蛋白质质量控制并调节多种细胞内功能。蛋白酶体主要负责原核生物和真核生物域中的这些任务。即使是最简单的蛋白酶也作为大型复合物发挥作用,由 20S 肽酶、一个由四个七聚体环组成的桶状结构以及一个或两个 AAA+(与多种细胞活动相关的 ATP 酶)环六聚体组成,这些环利用 ATP 结合和水解的循环来展开并将底物转运到 20S 蛋白酶腔中。了解这些酶的 AAA+和 20S 成分如何相互作用和协作以执行蛋白质降解非常重要,但原核蛋白酶体的高度动态性质阻碍了结构表征。在这里,我们使用电子显微镜确定了通过定点交联稳定的古菌 Cdc48 ⋅ 20S 蛋白酶体的结构。该复合物显示 Cdc48 和 20S 的同轴对准,并且具有酶活性,表明 AAA+展开酶相对于 20S 的摆动对于功能不是必需的。在该复合物中,调节 ATP 水解和降解的 Cdc48 的 N 端结构域以共面的方式与 Cdc48 的 D1 环结合,限制了 N 端结构域改变 20S 亲和力和降解活性的机制。

相似文献

1
Architecture and assembly of the archaeal Cdc48*20S proteasome.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):E1687-94. doi: 10.1073/pnas.1404823111. Epub 2014 Apr 7.
2
Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine.
Science. 2012 Aug 17;337(6096):843-6. doi: 10.1126/science.1224352. Epub 2012 Jul 26.
3
Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3327-32. doi: 10.1073/pnas.1300408110. Epub 2013 Feb 11.
4
An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication.
Protein Sci. 2015 Sep;24(9):1521-7. doi: 10.1002/pro.2740. Epub 2015 Jul 14.
7
Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum.
J Mol Biol. 2002 Apr 12;317(5):673-81. doi: 10.1006/jmbi.2002.5448.
9
Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex.
Cell. 2017 May 4;169(4):722-735.e9. doi: 10.1016/j.cell.2017.04.020.
10
Structure and function of the AAA+ ATPase p97/Cdc48p.
Gene. 2016 May 25;583(1):64-77. doi: 10.1016/j.gene.2016.02.042. Epub 2016 Mar 3.

引用本文的文献

1
The α5-α6-α7-Pba3-Pba4 Complex: A Starting Unit in Proteasome Core Particle Assembly.
Biomolecules. 2025 May 8;15(5):683. doi: 10.3390/biom15050683.
2
PI31 is a positive regulator of 20S immunoproteasome assembly.
J Cell Sci. 2025 May 15;138(10). doi: 10.1242/jcs.263887. Epub 2025 May 23.
3
PI31 is a positive regulator of 20S immunoproteasome assembly.
bioRxiv. 2025 Jan 15:2025.01.15.633194. doi: 10.1101/2025.01.15.633194.
4
5
ProEnd: A Comprehensive Database for Identifying HbYX Motif-Containing Proteins Across the Tree of Life.
bioRxiv. 2024 Jun 9:2024.06.08.598080. doi: 10.1101/2024.06.08.598080.
6
A Role for the Proteasome Alpha2 Subunit N-Tail in Substrate Processing.
Biomolecules. 2023 Mar 5;13(3):480. doi: 10.3390/biom13030480.
9
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome.
Biomolecules. 2021 Jan 24;11(2):148. doi: 10.3390/biom11020148.
10
Association with proteasome determines pathogenic threshold of polyglutamine expansion diseases.
Biochem Biophys Res Commun. 2021 Jan 15;536:95-99. doi: 10.1016/j.bbrc.2020.12.065. Epub 2020 Dec 25.

本文引用的文献

1
Cdc48: a swiss army knife of cell biology.
J Amino Acids. 2013;2013:183421. doi: 10.1155/2013/183421. Epub 2013 Sep 15.
2
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase.
Nat Struct Mol Biol. 2013 Oct;20(10):1164-72. doi: 10.1038/nsmb.2659. Epub 2013 Sep 8.
3
Conformational switching of the 26S proteasome enables substrate degradation.
Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.
4
Structural biology of the proteasome.
Annu Rev Biophys. 2013;42:29-49. doi: 10.1146/annurev-biophys-083012-130417. Epub 2013 Feb 13.
5
Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3327-32. doi: 10.1073/pnas.1300408110. Epub 2013 Feb 11.
6
Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine.
Science. 2012 Aug 17;337(6096):843-6. doi: 10.1126/science.1224352. Epub 2012 Jul 26.
8
The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP.
J Biol Chem. 2012 Mar 9;287(11):8561-70. doi: 10.1074/jbc.M111.302778. Epub 2012 Jan 23.
9
Proteasomes and protein conjugation across domains of life.
Nat Rev Microbiol. 2011 Dec 19;10(2):100-11. doi: 10.1038/nrmicro2696.
10
Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.
J Mol Biol. 2011 Oct 14;413(1):4-16. doi: 10.1016/j.jmb.2011.07.041. Epub 2011 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验