Suppr超能文献

活性氧代谢在干旱中的作用:并非如此简单明了。

The roles of reactive oxygen metabolism in drought: not so cut and dried.

作者信息

Noctor Graham, Mhamdi Amna, Foyer Christine H

机构信息

Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France.

出版信息

Plant Physiol. 2014 Apr;164(4):1636-48. doi: 10.1104/pp.113.233478. Epub 2014 Mar 7.

Abstract

Drought is considered to cause oxidative stress, but the roles of oxidant-induced modifications in plant responses to water deficit remain obscure. Key unknowns are the roles of reactive oxygen species (ROS) produced at specific intracellular or apoplastic sites and the interactions between the complex, networking antioxidative systems in restricting ROS accumulation or in redox signal transmission. This Update discusses the physiological aspects of ROS production during drought, and analyzes the relationship between oxidative stress and drought from different but complementary perspectives. We ask to what extent redox changes are involved in plant drought responses and discuss the roles that different ROS-generating processes may play. Our discussion emphasizes the complexity and the specificity of antioxidant systems, and the likely importance of thiol systems in drought-induced redox signaling. We identify candidate drought-responsive redox-associated genes and analyze the potential importance of different metabolic pathways in drought-associated oxidative stress signaling.

摘要

干旱被认为会引发氧化应激,但氧化剂诱导的修饰在植物对水分亏缺的响应中的作用仍不清楚。关键的未知因素是在特定细胞内或质外体部位产生的活性氧(ROS)的作用,以及复杂的网络抗氧化系统在限制ROS积累或氧化还原信号传递中的相互作用。本综述讨论了干旱期间ROS产生的生理方面,并从不同但互补的角度分析了氧化应激与干旱之间的关系。我们探讨氧化还原变化在植物干旱响应中涉及的程度,并讨论不同ROS产生过程可能发挥的作用。我们的讨论强调了抗氧化系统的复杂性和特异性,以及硫醇系统在干旱诱导的氧化还原信号传导中的潜在重要性。我们鉴定了候选的干旱响应氧化还原相关基因,并分析了不同代谢途径在干旱相关氧化应激信号传导中的潜在重要性。

相似文献

1
The roles of reactive oxygen metabolism in drought: not so cut and dried.
Plant Physiol. 2014 Apr;164(4):1636-48. doi: 10.1104/pp.113.233478. Epub 2014 Mar 7.
4
Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
Plant Cell Environ. 2010 Apr;33(4):453-67. doi: 10.1111/j.1365-3040.2009.02041.x. Epub 2009 Aug 27.
6
Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation.
Protoplasma. 2019 Jul;256(4):1013-1024. doi: 10.1007/s00709-019-01357-3. Epub 2019 Feb 25.
7
Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate.
Plant Physiol Biochem. 2010 May;48(5):351-8. doi: 10.1016/j.plaphy.2010.01.021. Epub 2010 Feb 4.
8
Effect of elevated CO₂ and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L.
Plant Physiol Biochem. 2012 Oct;59:55-62. doi: 10.1016/j.plaphy.2012.06.014. Epub 2012 Jun 28.
10
Direct evidence of drought stress memory in mulberry from a physiological perspective: Antioxidative, osmotic and phytohormonal regulations.
Plant Physiol Biochem. 2022 Sep 1;186:76-87. doi: 10.1016/j.plaphy.2022.07.001. Epub 2022 Jul 6.

引用本文的文献

3
enhances salt stress tolerance in flax: genome-wide profiling and functional validation of the SOD gene family.
Front Plant Sci. 2025 Jul 3;16:1609085. doi: 10.3389/fpls.2025.1609085. eCollection 2025.
4
Comparative insights into soybean and other oilseed crops' defense mechanisms against .
Front Plant Sci. 2025 Jun 24;16:1616824. doi: 10.3389/fpls.2025.1616824. eCollection 2025.
5
Overexpression of a (L.) Borkh WRKY Factor Gene Increased High Salinity Stress Tolerance in .
Int J Mol Sci. 2025 Jun 18;26(12):5833. doi: 10.3390/ijms26125833.
6
Plastids in a Pinch: Coordinating Stress and Developmental Responses Through Retrograde Signalling.
Plant Cell Environ. 2025 Sep;48(9):6897-6911. doi: 10.1111/pce.15664. Epub 2025 Jun 5.

本文引用的文献

1
The role of active oxygen in the response of plants to water deficit and desiccation.
New Phytol. 1993 Sep;125(1):27-58. doi: 10.1111/j.1469-8137.1993.tb03863.x.
3
Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis.
Plant Cell. 2013 Nov;25(11):4616-26. doi: 10.1105/tpc.113.117192. Epub 2013 Nov 27.
6
Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place.
Plant Physiol. 2013 Oct;163(2):665-71. doi: 10.1104/pp.113.223545. Epub 2013 Aug 19.
7
A new role for glutathione in the regulation of root architecture linked to strigolactones.
Plant Cell Environ. 2014 Feb;37(2):488-98. doi: 10.1111/pce.12172. Epub 2013 Aug 22.
8
Calcium and reactive oxygen species rule the waves of signaling.
Plant Physiol. 2013 Oct;163(2):471-85. doi: 10.1104/pp.113.222950. Epub 2013 Jul 29.
9
Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity.
Photosynth Res. 2013 Oct;116(2-3):455-64. doi: 10.1007/s11120-013-9876-4. Epub 2013 Jul 7.
10
A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2733-40. doi: 10.1073/pnas.1305443110. Epub 2013 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验