Suppr超能文献

增强亚麻对盐胁迫的耐受性:SOD基因家族的全基因组分析与功能验证

enhances salt stress tolerance in flax: genome-wide profiling and functional validation of the SOD gene family.

作者信息

Zhang Yuan, Wang Ruinan, Wang Hengping, Wang Huiyan

机构信息

Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China.

College of Laboratory, Jilin Medical University, Jilin, China.

出版信息

Front Plant Sci. 2025 Jul 3;16:1609085. doi: 10.3389/fpls.2025.1609085. eCollection 2025.

Abstract

Superoxide dismutase (SOD) serves as a critical regulator of plant stress adaptation to salinity, drought, and heavy metal toxicity. Flax ( L.), a globally cultivated oilseed and fiber crop, lacks comprehensive genomic characterization of its gene family. Here, we systematically identified 12 genes in the flax genome. Phylogenetic reconstruction of SOD homologs across diverse plant species classified these genes into three evolutionarily conserved subgroups: Cu/Zn-SOD (6 ), Fe-SOD (3 ), and Mn-SOD (3 ). Comparative analysis of exon-intron architectures and conserved motifs revealed high structural conservation among members within each clade. Promoter cis-element profiling identified predominant associations with phytohormone signaling (abscisic acid, methyl jasmonate) and abiotic stress responses, including hypoxia, drought, and low-temperature adaptation. MicroRNA target prediction identified lus-miR159 as the primary regulatory miRNA interacting with genes. Gene ontology (GO) enrichment highlighted roles in stress perception, metal ion chelation, and enzymatic reactive oxygen species (ROS) scavenging. Transcriptomic profiling demonstrated ubiquitous high expression of genes in leaf tissues. qRT-PCR validation under cold, drought, and salt stresses revealed significant upregulation of nine genes, implicating their involvement in antioxidant defense mechanisms. Functional characterization of in transgenic confirmed its role in enhancing salt tolerance through ROS homeostasis modulation. This study provides foundational insights into -mediated stress resilience, serving as a valuable resource for molecular breeding and functional genomics in flax.

摘要

超氧化物歧化酶(SOD)是植物适应盐胁迫、干旱胁迫和重金属毒性的关键调节因子。亚麻(Linum usitatissimum L.)是一种全球广泛种植的油料和纤维作物,其SOD基因家族缺乏全面的基因组特征描述。在此,我们系统地鉴定了亚麻基因组中的12个SOD基因。通过对不同植物物种的SOD同源物进行系统发育重建,将这些基因分为三个进化上保守的亚组:铜/锌超氧化物歧化酶(Cu/Zn-SOD,6个)、铁超氧化物歧化酶(Fe-SOD,3个)和锰超氧化物歧化酶(Mn-SOD,3个)。外显子-内含子结构和保守基序的比较分析表明,每个进化枝内的SOD成员具有高度的结构保守性。启动子顺式元件分析确定了其与植物激素信号传导(脱落酸、茉莉酸甲酯)和非生物胁迫反应(包括缺氧、干旱和低温适应)的主要关联。微小RNA靶标预测确定lus-miR159是与SOD基因相互作用的主要调控微小RNA。基因本体(GO)富集突出了SOD在胁迫感知、金属离子螯合和酶促活性氧(ROS)清除中的作用。转录组分析表明,SOD基因在叶片组织中普遍高表达。在冷胁迫、干旱胁迫和盐胁迫下进行的qRT-PCR验证显示,9个SOD基因显著上调,表明它们参与了抗氧化防御机制。在转基因拟南芥中对SOD进行功能表征,证实了其通过调节ROS稳态增强耐盐性的作用。本研究为SOD介导的胁迫抗性提供了基础见解,是亚麻分子育种和功能基因组学的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2b/12268355/8e9c5c9aa47f/fpls-16-1609085-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验