Mitev Pavlin D, Bakó Imre, Eriksson Anders, Hermansson Kersti
Department of Chemistry, The Ångström Laboratory, Uppsala University, Box 538, S-751 21 Uppsala, Sweden.
Phys Chem Chem Phys. 2014 May 28;16(20):9351-63. doi: 10.1039/c3cp55358b.
Precise molecular-level information on the water molecule is precious, since it affects our interpretation of the role of water in a range of important applications of aqueous media. Here we propose that electronic structure calculations for highly hydrated crystals yield such information. Properties of nine structurally different water molecules (19 independent OO hydrogen bonds) in the Al(NO3)3·9H2O crystal have been calculated from DFT calculations. We combine the advantage of studying different water environments using one and the same compound and method (instead of comparing a set of independent experiments, each with its own set of errors) with the advantage of knowing the exact atomic positions, and the advantage of calculating properties that are difficult to extract from experiment. We find very large Wannier dipole moments for H2O molecules surrounding the cations: 4.0-4.3 D (compared to our calculated value of 1.83 D in the gas phase). These are induced by the ions and the H-bonds, while other water interactions and the relaxation of the internal water geometry in fact decrease the dipole moments. We find a good correlation between the water dipole moment and the OO distances, and an even better (non-linear) correlation with the average electric field over the molecule. Literature simulation data for ionic aqueous solutions fit quite well with our crystalline 'dipole moment vs. OO distance' curve. The progression of the water and cation charges from 'small clusters ⇒ large clusters ⇒ the crystal' helps explain why the net charges on all the water molecules are so small in the crystal.
关于水分子精确的分子水平信息十分珍贵,因为它影响着我们对水在一系列水性介质重要应用中所起作用的理解。在此我们提出,对高度水合晶体进行电子结构计算可得到此类信息。通过密度泛函理论(DFT)计算,已得出了Al(NO3)3·9H2O晶体中9种结构不同的水分子(19个独立的OO氢键)的性质。我们将使用同一化合物和方法研究不同水环境的优势(而非比较一组独立实验,每个实验都有其自身的误差集)与知晓精确原子位置的优势以及计算难以从实验中提取的性质的优势结合起来。我们发现阳离子周围的H2O分子具有非常大的万尼尔偶极矩:4.0 - 4.3 D(相比之下,我们计算出的气相中值为1.83 D)。这些是由离子和氢键诱导产生的,而其他水相互作用以及内部水几何结构的弛豫实际上会降低偶极矩。我们发现水偶极矩与OO距离之间存在良好的相关性,与分子上的平均电场之间存在更好的(非线性)相关性。离子水溶液的文献模拟数据与我们的晶体“偶极矩与OO距离”曲线拟合得相当好。水和阳离子电荷从“小簇⇒大簇⇒晶体”的变化过程有助于解释为何晶体中所有水分子上的净电荷如此之小。