Suppr超能文献

家系中孟德尔一致基因分型错误的检测。

Detection of Mendelian consistent genotyping errors in pedigrees.

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington, United States of America; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America.

出版信息

Genet Epidemiol. 2014 May;38(4):291-9. doi: 10.1002/gepi.21806. Epub 2014 Apr 9.

Abstract

Detection of genotyping errors is a necessary step to minimize false results in genetic analysis. This is especially important when the rate of genotyping errors is high, as has been reported for high-throughput sequence data. To detect genotyping errors in pedigrees, Mendelian inconsistent (MI) error checks exist, as do multi-point methods that flag Mendelian consistent (MC) errors for sparse multi-allelic markers. However, few methods exist for detecting MC genotyping errors, particularly for dense variants on large pedigrees. Here, we introduce an efficient method to detect MC errors even for very dense variants (e.g., SNPs and sequencing data) on pedigrees that may be large. Our method first samples inheritance vectors (IVs) using a moderately sparse but informative set of markers using a Markov chain Monte Carlo-based sampler. Using sampled IVs, we considered two test statistics to detect MC genotyping errors: the percentage of IVs inconsistent with observed genotypes (A1) or the posterior probability of error configurations (A2). Using simulations, we show that this method, even with the simpler A1 statistic, is effective for detecting MC genotyping errors in dense variants, with sensitivity almost as high as the theoretical best sensitivity possible. We also evaluate the effectiveness of this method as a function of parameters, when including the observed pattern for genotype, density of framework markers, error rate, allele frequencies, and number of sampled inheritance vectors. Our approach provides a line of defense against false findings based on the use of dense variants in pedigrees.

摘要

检测基因分型错误是减少遗传分析中假阳性结果的必要步骤。当基因分型错误率高时,这一点尤为重要,正如高通量测序数据所报道的那样。为了在系谱中检测基因分型错误,存在不符合孟德尔遗传规律(MI)的错误检查,以及针对稀疏多等位基因标记的多点方法,这些方法会标记符合孟德尔遗传规律(MC)的错误。然而,检测 MC 基因分型错误的方法很少,特别是对于大型系谱上的密集变体。在这里,我们引入了一种有效的方法,可以检测 MC 错误,即使对于大型系谱上非常密集的变体(例如 SNP 和测序数据)也是如此。我们的方法首先使用基于马尔可夫链蒙特卡罗的采样器,使用适度稀疏但信息丰富的标记集来采样遗传向量(IVs)。使用采样的 IVs,我们考虑了两种测试统计量来检测 MC 基因分型错误:与观察基因型不一致的 IVs 的百分比(A1)或错误配置的后验概率(A2)。通过模拟,我们表明,即使使用更简单的 A1 统计量,该方法也可以有效地检测密集变体中的 MC 基因分型错误,其灵敏度几乎与理论上可能的最佳灵敏度一样高。我们还评估了这种方法作为函数的有效性,包括基因型的观察模式、框架标记的密度、错误率、等位基因频率和采样遗传向量的数量等参数。我们的方法为基于在系谱中使用密集变体的错误发现提供了一种防御手段。

相似文献

1
Detection of Mendelian consistent genotyping errors in pedigrees.家系中孟德尔一致基因分型错误的检测。
Genet Epidemiol. 2014 May;38(4):291-9. doi: 10.1002/gepi.21806. Epub 2014 Apr 9.

引用本文的文献

本文引用的文献

3
The role of large pedigrees in an era of high-throughput sequencing.大样本家族在高通量测序时代的作用。
Hum Genet. 2012 Oct;131(10):1555-63. doi: 10.1007/s00439-012-1190-2. Epub 2012 Jun 20.
5
Integration of SNP genotyping confidence scores in IBD inference.SNP 基因分型置信分数在 IBD 推断中的整合。
Bioinformatics. 2011 Oct 15;27(20):2880-7. doi: 10.1093/bioinformatics/btr486. Epub 2011 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验