Suppr超能文献

基于最大熵密度近似技术和非线性拉格朗日乘子的16QAM盲均衡

16QAM blind equalization via maximum entropy density approximation technique and nonlinear Lagrange multipliers.

作者信息

Mauda R, Pinchas M

机构信息

Department of Electrical and Electronic Engineering, Ariel University, 40700 Ariel, Israel.

出版信息

ScientificWorldJournal. 2014 Feb 27;2014:548714. doi: 10.1155/2014/548714. eCollection 2014.

Abstract

Recently a new blind equalization method was proposed for the 16QAM constellation input inspired by the maximum entropy density approximation technique with improved equalization performance compared to the maximum entropy approach, Godard's algorithm, and others. In addition, an approximated expression for the minimum mean square error (MSE) was obtained. The idea was to find those Lagrange multipliers that bring the approximated MSE to minimum. Since the derivation of the obtained MSE with respect to the Lagrange multipliers leads to a nonlinear equation for the Lagrange multipliers, the part in the MSE expression that caused the nonlinearity in the equation for the Lagrange multipliers was ignored. Thus, the obtained Lagrange multipliers were not those Lagrange multipliers that bring the approximated MSE to minimum. In this paper, we derive a new set of Lagrange multipliers based on the nonlinear expression for the Lagrange multipliers obtained from minimizing the approximated MSE with respect to the Lagrange multipliers. Simulation results indicate that for the high signal to noise ratio (SNR) case, a faster convergence rate is obtained for a channel causing a high initial intersymbol interference (ISI) while the same equalization performance is obtained for an easy channel (initial ISI low).

摘要

最近,受最大熵密度近似技术的启发,针对16QAM星座输入提出了一种新的盲均衡方法,与最大熵方法、戈达德算法等相比,其均衡性能有所提高。此外,还得到了最小均方误差(MSE)的近似表达式。其思路是找到那些能使近似MSE最小化的拉格朗日乘子。由于关于拉格朗日乘子的所得MSE的推导会导致拉格朗日乘子的非线性方程,所以忽略了MSE表达式中导致拉格朗日乘子方程非线性的部分。因此,所得的拉格朗日乘子并非能使近似MSE最小化的那些拉格朗日乘子。在本文中,我们基于通过使近似MSE相对于拉格朗日乘子最小化而得到的拉格朗日乘子的非线性表达式,推导出了一组新的拉格朗日乘子。仿真结果表明,对于高信噪比(SNR)情况,对于导致高初始码间干扰(ISI)的信道,收敛速度更快,而对于简单信道(初始ISI低),则能获得相同的均衡性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f59b/3958749/27eb4025d439/TSWJ2014-548714.002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验