Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.
Phys Rev Lett. 2014 Mar 28;112(12):127201. doi: 10.1103/PhysRevLett.112.127201. Epub 2014 Mar 24.
We study the mechanical properties of stoichiometric SiN resonators through a combination of spectroscopic and interferometric imaging techniques. At room temperature, we demonstrate ultrahigh quality factors of 5×107 and a f×Q product of 1×1014 Hz. To our knowledge, these correspond to the largest values yet reported for mesoscopic flexural resonators. Through a comprehensive study of the limiting dissipation mechanisms as a function of resonator and substrate geometry, we identify radiation loss through the supporting substrate as the dominant loss process. In addition to pointing the way towards higher quality factors through optimized substrate designs, our work realizes an enabling platform for the observation and control of quantum behavior in a macroscopic mechanical system.
我们通过光谱和干涉成像技术的组合研究了化学计量 SiN 谐振器的机械性能。在室温下,我们证明了超高的品质因数为 5×107,f×Q 乘积为 1×1014 Hz。据我们所知,这对应于迄今为止报道的介观弯曲谐振器的最大数值。通过对谐振器和基底几何形状作为函数的限制耗散机制的综合研究,我们确定通过支撑基底的辐射损耗是主要的损耗过程。除了通过优化基底设计来实现更高的品质因数外,我们的工作还为在宏观机械系统中观察和控制量子行为提供了一个可行的平台。