Suppr超能文献

用激光测量和成像纳米机械运动。

Measuring and imaging nanomechanical motion with laser light.

作者信息

Barg Andreas, Tsaturyan Yeghishe, Belhage Erik, Nielsen William H P, Møller Christoffer B, Schliesser Albert

机构信息

Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark.

出版信息

Appl Phys B. 2017;123(1):8. doi: 10.1007/s00340-016-6585-7. Epub 2016 Dec 15.

Abstract

We discuss several techniques based on laser-driven interferometers and cavities to measure nanomechanical motion. With increasing complexity, they achieve sensitivities reaching from thermal displacement amplitudes, typically at the picometer scale, all the way to the quantum regime, in which radiation pressure induces motion correlated with the quantum fluctuations of the probing light. We show that an imaging modality is readily provided by scanning laser interferometry, reaching a sensitivity on the order of , and a transverse resolution down to . We compare this approach with a less versatile, but faster (single-shot) dark-field imaging technique.

摘要

我们讨论了几种基于激光驱动干涉仪和腔的技术来测量纳米机械运动。随着复杂度的增加,它们实现的灵敏度范围从通常在皮米尺度的热位移幅度,一直到量子 regime,在该量子 regime 中,辐射压力会诱导与探测光的量子涨落相关的运动。我们表明,扫描激光干涉测量法很容易提供一种成像方式,其灵敏度达到 量级,横向分辨率低至 。我们将这种方法与一种通用性较差但速度更快(单次)的暗场成像技术进行比较。

相似文献

1
Measuring and imaging nanomechanical motion with laser light.
Appl Phys B. 2017;123(1):8. doi: 10.1007/s00340-016-6585-7. Epub 2016 Dec 15.
2
Nanomechanical motion measured with an imprecision below that at the standard quantum limit.
Nat Nanotechnol. 2009 Dec;4(12):820-3. doi: 10.1038/nnano.2009.343. Epub 2009 Nov 1.
3
Nonlinear cavity optomechanics with nanomechanical thermal fluctuations.
Nat Commun. 2017 Jul 7;8:ncomms16024. doi: 10.1038/ncomms16024.
4
Quantum correlations from a room-temperature optomechanical cavity.
Science. 2017 Jun 23;356(6344):1265-1268. doi: 10.1126/science.aag1407.
5
Visualization of Subatomic Movements in Nanostructures.
Nano Lett. 2021 Sep 22;21(18):7746-7752. doi: 10.1021/acs.nanolett.1c02644. Epub 2021 Sep 1.
6
Backaction amplification and quantum limits in optomechanical measurements.
Phys Rev Lett. 2010 Apr 2;104(13):133602. doi: 10.1103/PhysRevLett.104.133602. Epub 2010 Mar 31.
7
Truncated Nonlinear Interferometry for Quantum-Enhanced Atomic Force Microscopy.
Phys Rev Lett. 2020 Jun 12;124(23):230504. doi: 10.1103/PhysRevLett.124.230504.
8
Laser cooling of a nanomechanical oscillator into its quantum ground state.
Nature. 2011 Oct 5;478(7367):89-92. doi: 10.1038/nature10461.
9
Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.
Phys Rev Lett. 2012 May 25;108(21):211101. doi: 10.1103/PhysRevLett.108.211101. Epub 2012 May 21.
10
Observation of quantum motion of a nanomechanical resonator.
Phys Rev Lett. 2012 Jan 20;108(3):033602. doi: 10.1103/PhysRevLett.108.033602. Epub 2012 Jan 17.

引用本文的文献

1
A soft-clamped topological waveguide for phonons.
Nature. 2025 Jun;642(8069):947-953. doi: 10.1038/s41586-025-09092-x. Epub 2025 Jun 4.
2
Efficient Optomechanical Mode-Shape Mapping of Micromechanical Devices.
Micromachines (Basel). 2021 Jul 27;12(8):880. doi: 10.3390/mi12080880.
3
Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution.
Nat Nanotechnol. 2017 Aug;12(8):776-783. doi: 10.1038/nnano.2017.101. Epub 2017 Jun 12.

本文引用的文献

1
Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution.
Nat Nanotechnol. 2017 Aug;12(8):776-783. doi: 10.1038/nnano.2017.101. Epub 2017 Jun 12.
2
Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.
Phys Rev Lett. 2016 Jul 15;117(3):030801. doi: 10.1103/PhysRevLett.117.030801. Epub 2016 Jul 12.
3
Visualizing the Motion of Graphene Nanodrums.
Nano Lett. 2016 Apr 13;16(4):2768-73. doi: 10.1021/acs.nanolett.6b00477. Epub 2016 Mar 17.
4
Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
Phys Rev Lett. 2016 Feb 12;116(6):063601. doi: 10.1103/PhysRevLett.116.063601. Epub 2016 Feb 8.
5
Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys Rev Lett. 2016 Feb 12;116(6):061102. doi: 10.1103/PhysRevLett.116.061102. Epub 2016 Feb 11.
6
Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise.
Phys Rev Lett. 2016 Jan 8;116(1):013602. doi: 10.1103/PhysRevLett.116.013602. Epub 2016 Jan 6.
7
Measurement-based control of a mechanical oscillator at its thermal decoherence rate.
Nature. 2015 Aug 20;524(7565):325-9. doi: 10.1038/nature14672. Epub 2015 Aug 10.
8
A scanning cavity microscope.
Nat Commun. 2015 Jun 24;6:7249. doi: 10.1038/ncomms8249.
10
Dissipation in ultrahigh quality factor SiN membrane resonators.
Phys Rev Lett. 2014 Mar 28;112(12):127201. doi: 10.1103/PhysRevLett.112.127201. Epub 2014 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验