Suppr超能文献

IPCA-CMI:一种基于 PCA-CMI 和 MIT 得分组合的基因调控网络推断算法。

IPCA-CMI: an algorithm for inferring gene regulatory networks based on a combination of PCA-CMI and MIT score.

机构信息

Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

出版信息

PLoS One. 2014 Apr 11;9(4):e92600. doi: 10.1371/journal.pone.0092600. eCollection 2014.

Abstract

Inferring gene regulatory networks (GRNs) is a major issue in systems biology, which explicitly characterizes regulatory processes in the cell. The Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI) is a well-known method in this field. In this study, we introduce a new algorithm (IPCA-CMI) and apply it to a number of gene expression data sets in order to evaluate the accuracy of the algorithm to infer GRNs. The IPCA-CMI can be categorized as a hybrid method, using the PCA-CMI and Hill-Climbing algorithm (based on MIT score). The conditional dependence between variables is determined by the conditional mutual information test which can take into account both linear and nonlinear genes relations. IPCA-CMI uses a score and search method and defines a selected set of variables which is adjacent to one of X or Y. This set is used to determine the dependency between X and Y. This method is compared with the method of evaluating dependency by PCA-CMI in which the set of variables adjacent to both X and Y, is selected. The merits of the IPCA-CMI are evaluated by applying this algorithm to the DREAM3 Challenge data sets with n variables and n samples (n = 10, 50, 100) and to experimental data from Escherichia coil containing 9 variables and 9 samples. Results indicate that applying the IPCA-CMI improves the precision of learning the structure of the GRNs in comparison with that of the PCA-CMI.

摘要

推断基因调控网络(GRNs)是系统生物学中的一个主要问题,它明确地描述了细胞中的调控过程。基于条件互信息的路径一致性算法(PCA-CMI)是该领域中一种著名的方法。在这项研究中,我们引入了一种新的算法(IPCA-CMI),并将其应用于许多基因表达数据集,以评估该算法推断 GRNs 的准确性。IPCA-CMI 可以归类为一种混合方法,使用 PCA-CMI 和 Hill-Climbing 算法(基于 MIT 得分)。变量之间的条件依赖性由条件互信息测试确定,该测试可以考虑线性和非线性基因关系。IPCA-CMI 使用得分和搜索方法,并定义了一个与 X 或 Y 之一相邻的变量子集。该集合用于确定 X 和 Y 之间的依赖关系。该方法通过将与 X 和 Y 都相邻的变量子集用于评估依赖性,与 PCA-CMI 方法进行了比较。通过将该算法应用于具有 n 个变量和 n 个样本(n=10、50、100)的 DREAM3 挑战赛数据集和包含 9 个变量和 9 个样本的大肠杆菌实验数据,评估了 IPCA-CMI 的优点。结果表明,与 PCA-CMI 相比,应用 IPCA-CMI 可以提高学习 GRNs 结构的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b8b/3984085/f12ee466cc9d/pone.0092600.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验